
c© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.

Robust stability of polytopic time-inhomogeneous

Markov jump linear systems ?

Y. Zacchia Lun* a, A. D’Innocenzo b,c, M. D. Di Benedetto b,c

aIMT School for Advanced Studies Lucca, Piazza S. Francesco, 19 - 55100 Lucca, Italy

bCenter of Excellence DEWS, University of L’Aquila, Via Vetoio, Coppito - 67100 L’Aquila, Italy

cDepartment of Information Engineering, Computer Science and Mathematics, University of L’Aquila,
Via Vetoio, Coppito - 67100 L’Aquila, Italy

Abstract

The transition probabilities of jumps between operational modes of discrete-time Markov(ian) jump linear systems (dtMJLSs)
are generally considered to be time-invariant, certain, and often completely known in the majority of dedicated studies. Still,
in most real cases the transition probability matrix (TPM) cannot be computed exactly and is time-varying. In this article, we
take into account the uncertainty and time-variance of the jump parameters by considering the underlying Markov chain as
polytopic and time-inhomogeneous, i.e., its TPM is varying over time with variations that are arbitrary within a polytopic set
of stochastic matrices. We show that the conditions used for time-homogeneous dtMJLSs are not enough to ensure the stability
of the time-inhomogeneous system, and that perturbations on values of the TPM can make a stable system unstable. We
present necessary and sufficient conditions for mean square stability (MSS) of polytopic time-inhomogeneous dtMJLSs, prove
that deciding MSS on such systems is NP-hard and that MSS is equivalent to exponential MSS and to stochastic stability. We
also derive necessary and sufficient conditions for robust MSS of dtMJLSs affected by polytopic uncertainties on transition
probabilities and bounded disturbances.

Key words: Time-inhomogeneous Markov chains; Markov models; stochastic jump processes; robust stability

1 Introduction

To date, quite a few fundamental control issues, such as
stability and stabilization, estimation and filtering, fault
detection and diagnosis, have been addressed in the lit-
erature on discrete-time Markov(ian) jump linear sys-
tems (dtMJLSs), see Costa, Fragoso & Marques (2005),
Zhang, Yang, Shi & Zhu (2016) as textbooks with im-
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portant results and detailed examination of the general
state of the art. However, as a crucial factor govern-
ing the behaviours of dtMJLSs, the transition probabili-
ties (TPs) are generally considered to be time-invariant,
certain, and often completely known in the majority of
studies. Still, in most real cases the transition probabil-
ity matrices (TPMs) are affected by global uncertainty
due to random and systematic errors of measurement
and numerical computation procedures (used to obtain
the values of TPMs), by incomplete knowledge of some
TPs (when adequate samples of the transitions are costly
or time-consuming to obtain), and by abrupt and un-
predictable time-variance (due to environmental factors,
like for instance the wind perturbing the model of air-
speed variation in a vertical take-off landing helicopter
system, see Long & Yang (2013)). The polytopic time-
inhomogeneous (PTI) model of the TPMs will allow us
to take into account all the aforementioned aspects. Our
choice of the PTI model is motivated by the fact that
uncertainty and time-variance are intrinsic to the real-
world systems, and all measurement and numerical anal-
ysis procedures give us confidence levels (determined
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by accuracy and precision of the measuring instrument
and/or numerical algorithm), which bound the possible
values each TP can assume.

There are several alternatives to PTI model of TPs in
the literature on uncertain dtMJLSs, but most of them
typically account for either incomplete knowledge of
TPMs, or time-variance. Specifically, the incomplete
knowledge of stationary TPs can be represented or as
norm-bounded (Karan, Shi & Kaya, 2006) or as poly-
topic uncertainties (Costa, Assumpção, Boukas & Mar-
ques (1999), where the precise values are not obtained
and only the bounds of TPs are available), or as partially
unknown TPs (Zhang, Boukas & Lam (2008), Zhang,
Yang, Shi & Zhu (2016), where not all values are avail-
able). See Zacchia Lun (2017) for a comparison of these
models of time-invariant uncertainties in TPs and for an
overview of the related results on stability (De Souza,
2006; Zhang, Yang, Shi & Zhu, 2016). The uncertainties
in time-inhomogeneous characteristics of TPs instead, in
general, can be determined by either non-deterministic
or stochastic variations. PTI dtMJLSs studied here, and
dtMJLSs governed by piecewise homogeneous Markov
chains subject to an arbitrary high-level switching sig-
nal (e.g., the signal with average dwell time approach-
ing zero, see Sun, Zhao & Hill (2006), Colaneri (2009),
Bolzern, Colaneri & De Nicolao (2010) and references
therein) account for the first type of variations, while
semi-Markov jump linear systems (semi-MJLSs, see
Zhang, Leng & Colaneri (2016)), and piecewise homo-
geneous dtMJLSs with TPs themselves governed by a
higher-level Markov chain (MC, see Zhang, Yang, Shi
& Zhu (2016, Part II)) provide a rationale for stochas-
tic variations. For dtMJLSs with TPMs taking values
in the finite set and switching governed by possibly a
priori unknown sequence, Lutz & Stilwell (2016) have
presented necessary and sufficient conditions for uni-
form exponentially mean square stability and uniform
stochastic disturbance attenuation, expressed as a set
of finite-dimensional linear matrix inequalities (LMIs,
see e.g. Boyd, El Ghaoui, Feron & Balakrishnan (1994)
for a general discussion). It used time-varying quadratic
Lyapunov function arguments. When the sojourn time
in dtMJLSs’ operational modes does not follow geomet-
ric distribution, the TPs are time-varying and have a
“memory” property, resulting in so-called semi-MJLSs.
See Zhang, Yang, Shi & Zhu (2016) for a formal in-
troduction of such systems, and detailed treatment
of stability and stabilization via semi-Markov kernel
(where the probability density function of sojourn-time
is dependent on both current and next system mode)
and time-varying Lyapunov function approach. Notice-
ably, both semi-MJLSs and dtMJLSs with piecewise-
constant TPs subject to a higher-level TPM require a
prior knowledge of time-varying behaviour of transi-
tions between operational modes of the system, in order
to describe the involved stochastic variations. Further-
more, similarly to the case of piecewise homogeneous
dtMJLSs governed by an arbitrary average dwell time

signal, the considered variations need to be in a finite
set. This requirement implies the fundamental assump-
tion that the TPs can be computed exactly. The PTI
dtMJLSs model does not have such limitations, and has
been already seen in works that have considered the
robust stability problem. Notably, in Aberkane (2011) a
sufficient condition for stochastic stability (SS) in terms
of LMI feasibility problem was provided. The approach
of Aberkane (2011) made use of a parameter dependent
stochastic Lyapunov function. In Chitraganti, Aberkane
& Aubrun (2013), instead, a sufficient condition for
MSS of a dtMJLS with interval TPM, which in turn can
be represented as a convex polytope (Hartfiel, 1998),
was presented in relation to spectral radius. In general,
before our contribution, described below, only sufficient
stability conditions have been derived for dtMJLSs
with time-inhomogeneous MCs having TPM arbitrarily
varying within a polytopic set of stochastic matrices.

As a main contribution of this paper, we derive neces-
sary and sufficient conditions for (robust) MSS of au-
tonomous dtMJLSs governed by PTI MCs in both au-
tonomous and affected by a bounded process noise set-
tings. Such conditions require to decide whether the joint
spectral radius (JSR) of a finite family of matrices is
smaller than 1. While it is well known that the stabil-
ity analysis problem for general switching systems (i.e.
deciding whether the JSR is smaller than 1) is NP-hard
(Tsitsiklis & Blondel, 1997), we prove that it is NP-hard
even for the matrices structure deriving from our par-
ticular model. We also show that MSS is equivalent to
exponential MSS (EMSS) and to SS. A preliminary and
reduced version of the work on noiseless dtMJLSs with
polytopic time-varying TPMs has been presented at the
55th IEEE Conference on Decision and Control (Zacchia
Lun, D’Innocenzo & Di Benedetto, 2016), while a pre-
liminary version of work on PTI dtMJLS with bounded
process noise has been presented at the 20th IFAC World
Congress (Zacchia Lun, D’Innocenzo & Di Benedetto,
2017). With respect to the preliminary versions, this pa-
per provides a uniform treatment of the problem, with
additional technical details and a revised version of some
proofs, in order to simplify the presentation and improve
the formal rigor. Notably, this paper adds Lemma 17,
and revises the proofs of Proposition 9 and Theorems 11,
14 and 16. Furthermore, it provides a detailed analysis
of robust stability for a realistic system of considerable
size, with an emphasis on the gained knowledge and the
computational effort.

The remainder of the paper is structured as follows. In
Section 2 we introduce the notation used throughout this
article and present the conceptual preliminaries neces-
sary to a formal treatment of the topic. Then, in Sec-
tion 3 we provide a mathematical model of dtMJLSs with
PTI TPMs and different stability definitions relevant to
our work. Next, Section 4 is devoted to the formal in-
troduction of the notion of the joint spectral radius and
its notable properties, used in the following Sections 5
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and 6 to present the main technical results of this article
on robust stability of PTI dtMJLSs with and without
the process noise. Finally, Section 7 provides a practical
numerical example and Section 8 concludes this work.

2 Notation and conceptual preliminaries

We denote by F the set of either real or complex num-
bers, and the sets of all nonnegative and all positive
numbers are indicated by subscripts 0 and +, respec-
tively. We will be dealing with finite-dimensional lin-
ear spaces, for which all norms, denoted by ‖·‖, are
equivalent (Kubrusly, 2001, Theorem 4.27), so the com-
pleteness of a normed linear space is preserved when
the given norm is replaced by an equivalent one. We
will use the variants of p-norms (Meyer, 2000, p. 274)
(a.k.a. Lp-norms), which ∀x ∈ Fn, and ∀p ≥ 1, are de-

fined as ‖x‖p, (
∑n
i=1 |xi|p)

1
p . We denote by Fm,n a set

of matrices with m rows, n columns, and entries in F,
or, equivalently, a set of linear maps between two linear
spaces Fn and Fm. We indicate by Fn,n0 a set of all posi-
tive semi-definite matrices of order n with entries in F,
and by NFn,n0 the set of all N-sequences of square matri-
ces in Fn,n0 . The identity matrix of size n is denoted by
In, while the zero matrix of the same size is denoted by
0n. The operation of transposition is indicated by super-
script T , the complex conjugation by overbar, while the
conjugate transpose of a (complex) matrix is denoted
by superscript ∗. For any square matrix A, its trace is
denoted by tr(A), and the spectral radius by ρ(A). To
write concisely specific rows, columns and submatrices
of a given matrix, we denote by Ai• the i-th row of a
matrix A = [aij ], by A[i,i+d]• the submatrix of A con-
taining d+1 consecutive rows, starting from Ai•, and
by A•j the j-th column of a matrix A. By its definition
(Meyer, 2000, p. 280), any matrix norm satisfies sub-
additive property expressed by the triangle inequality
stated ∀A,B∈Fm,n as ‖A+B‖≤‖A‖+‖B‖. As specific
matrix norms, we will use the entry-wise norms `1 and
`2 (Horn & Johnson, 2012, p. 341), denoted by ‖·‖1,

‖·‖2, and defined respectively as ‖A‖1 , ‖vec(A)‖1,

and ‖A‖2 , ‖vec(A)‖2 =
√

tr(A∗A). We indicate by
N the number of operational modes (a.k.a. discrete
states) of the system, by M the related set of opera-
tional modes, and will extensively use a linear space
made up of all N-sequences of either real or complex
m×n matrices, denoted by NFm,n. The direct sum op-
eration, denoted by ⊕, will be applied to sequences of

square matrices, e.g. A = (Ai)
N
i=1, to produce a block

diagonal matrix, having the elements of A on the main
diagonal blocks. The Kronecker product, denoted by ⊗,
will be used together with transformation converting
a matrix into a column vector, known as vectoriza-
tion, denoted by vec(·). Then, we indicate by vec2(·)
a linear operator defined ∀A = (Ai)

N
i=1 ∈ NFm,n as

vec2(A) , [vec(A1) , vec(A2) , . . . , vec(AN )]
T

. For the

space NFm,n, we define the following equivalent norms:

‖A‖1,
∑N
i=1 ‖Ai‖, then ‖A‖2,

√∑N
i=1 tr(A∗iAi), and

‖A‖max , maxi∈M {‖Ai‖}. The linear spaces NFm,n
equipped with any of the above norms are uniformly
homeomorphic to a finite-dimensional Banach space
FNmn through the mapping vec2(·) (Costa et al., 2005,
p. 17). Thus, all these normed linear spaces are complete.

The stochastic basis of dtMJLSs considered in this ar-
ticle is defined by the quadruple (Ω,G, (Gk) ,Pr), where
Ω is the sample space, G is a corresponding σ-algebra of
events, (Gk) is the filtration, and Pr is the probability
measure. The jump variable is defined as θk : Ω→M, s.t.
∀ω ∈ Ω, with ω , {(φk, χk) : k∈Z0, φk∈M, χk∈Fnx},
θk(ω) = φk. The values i ∈M of the jump variable θk
are all measurable elementary events on G. As a con-
sequence, the indicator function 1{θk=i} is s.t., for any
ω ∈ Ω, one has 1{θk=i}(ω) = 1 if θk(ω) = i, and 0 oth-
erwise. The TP between the operational modes i, j in
M of a dtMJLS is pij(k) , Pr(ω :θk+1(ω)=j | θk= i) =
Pr(θk+1 =j | θk= i)≥0. Since pij(k) is a probability dis-
tribution ∀i∈M, one has that the total mass of the dis-
tribution equals 1. Evidently, {θk :k∈Z0}, with θk de-

fined above, is a MC with TPM P (k) , [pij(k)]. The ini-
tial probability distribution of the MC is defined ∀i∈M
by pi(0) , Pr(ω :θ0(ω)= i) = Pr(θ0 = i), and the initial
probability distribution of all the operational modes is

denoted by p0, [p1(0), p2(0), . . . , pN (0)]
T

. The expected
value is denoted by E (·). Following the line of reason-

ing of Costa et al. (2005), we set Hn,L2(Ω,G,Pr,Fn)
the Hilbert space of all Fn-valued G-measurable ran-
dom variables with inner product given ∀x, y ∈ Hn by
〈x, y〉 = E (x∗y), and Euclidean norm denoted by ‖·‖2.
Then, we set the direct sum of countably infinite copies
of Hn, denoted by `2(Hn), which is a Hilbert space made
up of collections of all Fn-valued G-measurable random
variables indexed by the discrete time set T , Z0, i.e.,
f = {fk∈Hn : k∈T} s.t. ‖f‖22 ,

∑∞
k=0 E(‖fk‖2) < ∞.

For each f, g ∈ `2(Hn), the inner product is 〈f, g〉 ,∑∞
k=0 E(f∗kgk)≤‖f‖2 ‖g‖2. Then, the space Hn⊆`2(Hn)

is defined as follows. We say that f ={fk∈Hn : k∈T}∈
Hn if f ∈ `2(Hn) and fk ∈ L2(Ω,Gk,Pr,Fn) ∀k ∈ T. We
have that Hn is a closed linear subspace of `2(Hn) and
therefore a Hilbert space (Costa et al., 2005, p. 21). We

also define Hnk as formed by sequences (ft)
k
t=0 s.t. ft ∈

L2(Ω,Gt,Pr,Fn), ∀t ∈ Tk, where the bounded discrete-
time set Tk is defined as {t∈T : t≤ k}. Finally, we de-
note by Θ0 the set of all G0-measurable random variables
taking values in M. This permits to state the initial con-
ditions for a dtMJLS with θk and xk measurable ∀k∈T
as x0∈Hnx

0 , θ0∈Θ0.

3 System model and stability definitions

Consider an autonomous dtMJLS described by the fol-
lowing state-space model defined on a stochastic basis
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(Ω,G, (Gk) ,Pr), where xk is a column vector of nx either
real or complex state variables, vk ∈ Fnv is a vector of

process noise variables, A , (Ai)
N
i=1 ∈ NFnx,nx is a se-

quence of state matrices, and H,(Hi)
N
i=1∈NFnx,nv is a

sequence of process noise matrices, each of which is asso-
ciated to an operational mode of the (switching) system;
the values of x0 ∈ Hnx

0 and θ0 ∈ Θ0, i.e., x0 ∈ Fnx and
ϑ0∈M, respectively, represent the initial conditions:{

xk+1 = Aθkxk+Hθkvk,

x0 = x0, θ0 = ϑ0
(1)

In this work we assume that the TPM P (k) is vary-
ing over time, with variations that are arbitrary within
a polytopic set of stochastic matrices. In order to ex-
press this statement formally, let V ∈ Z+ be a number
of vertices of a convex polytope, and V be an index set
of vertices of a convex polytope. Then, the set of ver-
tices of a convex polytope of TPMs is formally defined as

VP,{Pl : l∈V}. These vertices are obtained from mea-
surement on the real system or via numerical reasoning,
taking into account accuracy and precision of the mea-
suring instruments and/or numerical algorithms. They
bound the possible values each TP can assume. Then,
the PTI assumption is stated as follows.

Assumption 1 The time-varying TPM P (k) is poly-
topic, i.e., ∀k∈T, one has that

P (k)=
∑V

l=1
λl(k)Pl, λl(k)≥0,

∑V

l=1
λl(k)=1 (2)

where ∀l ∈V, Pl ∈ VP⊂ VRN,N , i.e., Pl are elements of
a given finite set of TPMs, which are the vertices of a
convex polytope; moreover, λl(k) are unmeasurable.

A visual representation of the concept of arbitrarily vari-
ations within a convex hull of points is illustrated in Fig-
ure 1, where P1, P2 and P3 represent the vertices, and
P (k) shows a possible evolution in time of an element
satisfying polytopic time-varying assumption.

Fig. 1. Dynamics of an element satisfying Assumption 1

Following the standard workflow for dtMJLSs (Costa
et al., 2005, p. 31), we use the indicator function to take
advantage of the Markov property for system’s state xk,

and adopt the subsequent notation, where k ∈ T and
i∈M.

qi(k) , E
(
xk1{θk=i}

)
∈ Fnx (3)

q(k) , [q1(k), q2(k), . . . , qN (k)]
T ∈ FNnx

ri(k) , E
(
vk1{θk=i}

)
∈ Fnv (4)

r(k) , [r1(k), r2(k), . . . , rN (k)]
T ∈ FNnv

Qi(k) , E
(
xkx∗k1{θk=i}

)
∈ Fnx,nx

0 (5)

Q(k) , (Qi(k))
N
i=1 ∈ NFnx,nx

0 (6)

Ri(k) , E
(
vkv∗k1{θk=i}

)
∈ Fnv,nv

0 (7)

R(k) , (Ri(k))
N
i=1 ∈ NFnv,nv

0 (8)

HR(k)H∗ , (HiRi(k)H∗i )
N
i=1 ∈ NFnx,nx

0 (9)

Wi(k) , E
(
xkv∗k1{θk=i}

)
∈ Fnv,nx (10)

W(k) , (Wi(k)) ∈ NFnv,nx (11)

AW(k)H∗ , (AiWi(k)H∗i ) ∈ NFnx,nx

0 (12)

This permits to define the expected value of xk as

E(xk) =
∑N

i=1
qi(k) ∈ Fnx (13)

and the second moment of xk as

E(xkx∗k) =
∑N

i=1
Qi(k) ∈ Fnx,nx

0 (14)

The expressions of the first and second moment of xk
above can be easily derived from the definitions of the
expected value and of the indicator function. This nota-
tion is used throughout the rest of the article to derive
the necessary and sufficient conditions for (mean square)
stability of PTI dtMJLSs as in (1).

The notion of stability of dtMJLSs that parallels the
ideas of Lyapunov stability theory is the so-called mean
square stability, which for a system described by (1) is
defined as follows (Costa et al., 2005, pp. 36–37).

Definition 2 A dtMJLS (1) is MSS if for any initial
condition x0 ∈Hnx

0 and θ0 ∈Θ0, ∃xe ∈Fnx , Qe ∈Fnx,nx

+
(independent from initial conditions x0 and θ0), such that

lim
k→∞

‖E(xk)− xe‖ = 0, (15a)

lim
k→∞

‖E(xkx∗k)−Qe‖ = 0 (15b)
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Remark 3 In noiseless case, i.e., when vk = 0 in (1),
the conditions (15) defining MSS become

lim
k→∞

E(xk) = 0, lim
k→∞

E(xkx∗k) = 0 (16)

as stated in Costa et al. (2005, p. 37, Remark 3.10).

There exist also other forms of stability for dtMJLSs
without process noise, notably exponential mean square
stability (EMSS) and stochastic stability (SS).

Definition 4 A dtMJLS (1) is EMSS if for some reals
β≥1, 0<ζ<1, we have for all initial conditions x0∈Hnx

0
and θ0∈Θ0 that, for every k∈T, if vk=0, then

E
(
‖xk‖2

)
≤ βζk ‖x0‖22 (17)

Definition 5 A dtMJLS (1) is stochastically stable
if for all initial conditions x0∈Hnx

0 and θ0∈Θ0, we have
that, if vk=0 for every k∈T, then∑∞

k=0
E
(
‖xk‖2

)
<∞ (18)

Remark 6 Clearly, in PTI setting, the conditions (15) –
(18) are required to be satisfied for any possible sequence
of values of P (k) satisfying Assumption 1. Moreover,
(17) points out the common maximal decay rate ζ for all
possible evolutions of P (k). Also, in time-homogeneous
setting, the values of xe and Qe in (15) are the same for
any initial starting time k0, and any initial probability
distribution pk0 . This definition is used in the discussion
of the stability of dtMJLSs affected by additive distur-
bance following the normal distribution, under the er-
godic assumption for a stationary Markov chain (Costa
et al., 2005, pp. 48 – 55). Unfortunately, an extension of
this type of result is not possible in PTI setting, since an
equivalent strong ergodic assumption (Isaacson & Mad-
sen, 1976), guaranteeing convergence and loss of mem-
ory, would be too restrictive to be of any actual use. This
is the reason why there is no discussion of the stability of
the PTI dtMJLSs affected by additive process noise with
a normal distribution in this article.

In time-homogeneous case, i.e., when P (k) = P ∀k ∈
T, there is a condition based on a value of a spectral
radius of a matrix associated to the second moment of
xk that is necessary and sufficient for the (mean square)
stability of a system described by (1); furthermore, in the
noiseless case, MSS, EMSS and SS are equivalent (Costa
et al., 2005, pp. 36–44, 48–49, 55–57). Specifically, the
matrix related to the second moment of xk that we have
mentioned above is

Λ ,
(
PT ⊗ In2

x

) (⊕N
i=1

(
Āi ⊗Ai

))
(19)

The necessary and sufficient condition for the MSS of
time-homogeneous dtMJLSs we have indicated before is

ρ(Λ)< 1. This condition for MSS does not hold in PTI
case, as proven in Zacchia Lun et al. (2016), Zacchia
Lun et al. (2017) and Lutz (2014, Remark 4.9), where
all the considered time-homogeneous dtMJLSs have the
values of the spectral radius of Λ smaller than 1, but
when the PTI TPMs are allowed to switch arbitrarily in
a set of TPMs at each time step, the resulting systems
are unstable.

In Sections 5 and 6 we will present conditions, proven
to be necessary and sufficient, for MSS of PTI dtMJLSs.
The conditions are based on the generalization of the
notion of spectral radius to sets of matrices. This gener-
alization is known as joint spectral radius (or JSR).

4 Joint spectral radius

The JSR (Rota & Strang, 1960) is a generalization of
the classical notion of spectral radius of a matrix, to sets
of matrices. In the last decades JSR has been subject of
intense research due to its role in the study of wavelets,
switching systems, approximation algorithms, and many
other topics (Jungers, 2009). In order to define JSR for-
mally, let us denote by VFN,N the set of all either real
or complex square N×N matrices of cardinality V . For
each k∈Z+, P⊆VFN,N , let us consider the set Pk(P) of
all possible products of length k whose factors are ele-
ments of P, i.e.,

Pk(P) ,

{(∏k

i=1
P ∗li

)∗
∈FN,N : Pli ∈P⊆VFN,N

}
(20)

For any matrix norm ‖·‖ on FN,N , consider the supre-
mum among the normalized norms of all products in

Pk(P), with k ∈ Z+, i.e., ρ̂k(P) , supP∈Pk(P) ‖P‖
1
k .

Then, the joint spectral radius of P ⊆ VFN,N is defined
as ρ̂(P) = limk→∞ ρ̂k(P). The JSR of a bounded set of
matrices has some interesting properties.

Proposition 7 The convex hull of a set has the same
joint spectral radius as the original set, i.e.,

ρ̂(convP) = ρ̂(P) (21)

PROOF. See Barabanov (1988). 2

Proposition 8 For any bounded set of matrices P ⊆
VFN,N and for any k∈Z+, all matrix products P ∈Pk (P)
converge to zero matrix as k→∞, if and only if ρ̂(P)<1.

PROOF. See Berger & Wang (1992, Thm. I(b)). 2

These concepts are at the basis of our main results on
(robust) stability of PTI dtMJLSs, presented next.
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5 Stability conditions in noiseless setting

The results of this section are based on a noiseless version
of (1), i.e., when vk=0 for every k∈T:{

xk+1 = Aθkxk,

x0 = x0, θ0 = ϑ0.
(22)

Let the TPM P (k)=[pij(k)] of the system (22) be PTI,
i.e., satisfying Assumption 1. Then, one can easily see
that the recursive equations for qi(k) and Qi(k) defined
by (3) and by (5), respectively, have the same structure
as their counterpart in the time-homogeneous case with
known probability matrix (Costa et al., 2005, p. 32):

Proposition 9 In a dtMJLS (22) for all k∈T, j∈M

qj(k + 1) =
∑N

i=1
pij(k)Aiqi(k) (23)

Qj(k + 1) =
∑N

i=1
pij(k)AiQi(k)A∗i (24)

E
(
‖xk‖22

)
=E

(∥∥∥∥(∏k−1

i=0
A∗θ(i)

)∗
x0

∥∥∥∥2
2

)
≤nx‖Q(k)‖1 (25)

PROOF. See Appendix, Section A.2. 2

Similarly to the time-homogeneous case (Costa et al.,
2005, pp. 33–35), also here, via application of Proposi-
tion 9 describing through (24) the dynamics of the ma-
trices Qi(k), the definition of the linear operator vec2(·),
and the related definition of the linear mapping vec(·),
the properties of the Kronecker product to Q(k), defined
by (6), we have that vec2(Q(k + 1)) = Λ(k)vec2(Q(k)),
where Λ(k) is a time-varying version of (19), i.e.,

Λ(k) ,
(
PT (k)⊗ In2

x

) (⊕N
i=1

(
Āi⊗Ai

))
(26)

Proposition 10 Λ(k) is polytopic, i.e., for each k∈T

Λ(k)=
∑V

l=1
λl(k)Λl, λl(k) ≥ 0,

∑V

l=1
λl(k)=1, (27a)

Λl ,
(
PTl ⊗ In2

x

) (⊕N
i=1

(
Āi⊗Ai

))
, (27b)

where for each l ∈ V, Pl ∈ VP ⊂ VRN,N , i.e., Pl are
elements of a given finite set of TPMs, which are the
vertices of a convex polytope.

PROOF. See Appendix, Section A.3. 2

Similarly to VP, let us indicate by VΛ the set of vertices
of the convex polytope of the matrices Λ(k) related to
the second moment of xk through Q(k). Then, ∀k ∈ T
Λ(k)∈convVΛ. It is worth noting that the set of possible
values of Λ(k) is bounded, but uncountable. Also, by
Assumption 1, the values of Λ(k) are unmeasurable.

Then, the repeated applications of (26) show that

vec2(Q(k)) =

(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0)) (28)

The previous equation will be used in the proof of our
first main result, presented in the next subsection.

5.1 Conditions for mean square stability

It is well known that the maximal rate of growth among
all products of matrices from a bounded set is given by
its JSR, that was introduced in Section 4 and will be
used in the following theorem, which presents necessary
and sufficient conditions for the MSS of PTI dtMJLSs.

Theorem 11 A dtMJLS (22) with PTI TPM satisfying
Assumption 1 is MSS if and only if ρ̂(VΛ)<1.

PROOF. See Appendix, Section A.4. 2

The presented condition is very useful from a theoret-
ical point of view, but it is computationally demand-
ing, as shown in the next subsection. For additional de-
tails on the topic of computational complexity in general
and NP-hardness in particular, see for instance Garey &
Johnson (2002).

5.2 Computational complexity

While it is well known that the stability analysis problem
for general switching systems (that is, deciding whether
the JSR is smaller than 1) is NP-hard (Tsitsiklis & Blon-
del, 1997), we prove in the following theorem that it is
NP-hard even in our particular model.

Theorem 12 Given a dtMJLS (22) having PTI TPM
satisfying Assumption 1, unless P =NP , there is no
polynomial-time algorithm that decides whether it is
mean square stable.

PROOF. See Appendix, Section A.5. 2

Remark 13 Although the computation of the exact
value of the JSR is NP-hard, there exist efficient algo-
rithms to approximate it up to any given accuracy (Pro-
tasov, Jungers & Blondel, 2010). Moreover, the stability
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problem is algorithmically decidable for sets of matrices
that have the finiteness property (Jungers, 2009, Propo-
sition 2.9), which holds if the set of matrices admits a
complex polytope extremal norm (Guglielmi, Wirth &
Zennaro, 2005). Then, the exact value of the JSR for
the vast majority of matrix families in dimensions ≤ 20
can be found by the algorithm, that for nonnegative ma-
trices works faster and finds the JSR in dimensions of
order 100 within a few iterations. See Jungers, Cicone
& Guglielmi (2014) for a sufficient condition for the
existence of an extremal norm and efficient algorithms
for computing the JSR, and Vankeerberghen, Hendrickx
& Jungers (2014) for a description of a toolbox imple-
menting the aforementioned algorithm. See also Ahmadi
& Jungers (2016) for the connections between Lyapunov
functions and the finiteness property of the optimal
product that achieves the exact value of the JSR.

In the next subsection we present a theorem that links
MSS to EMSS and to SS.

5.3 Stability equivalence

Our last but not least important result on stability of
autonomous noiseless dtMJLSs as in (22) having PTI
TPs is presented in the following theorem.

Theorem 14 The following statements are equivalent.

(1) The dtMJLS (22) is MSS;
(2) The dtMJLS (22) is EMSS;
(3) The dtMJLS (22) is SS.

PROOF. See Appendix, Section A.6. 2

The results presented in this section, including several
steps of the related proofs, are the basis for deriving the
results of the next section, where on top of time-varying
perturbations in uncertain TPMs, we consider also the
presence of a bounded process noise.

6 Stability with bounded process noise

In order to better understand how the time-varying dis-
turbances in uncertain TPMs affect the stability of dt-
MJLSs, until now we have focused on state-space models
without noise, control input, or any type of uncertain-
ties in system parameters. Obviously, these parts of the
model are not immune to the disturbances. Notably, the
discrepancies between the modeled system states and
the real process are often represented by an additive pro-
cess noise, which in this section is described by an `2-
stochastic signal. Such problem setup is particularly use-
ful for the H∞-control problems, as described by Costa
et al. (2005, Chapter 7, pp. 143–166) for the dtMJLSs

with time-invariant and exactly known TPs between the
operational modes.

Consider again an autonomous dtMJLS (1), where the
TPM is time-varying, with variations that are arbitrary
within a polytopic set, as formally stated by Assump-
tion 1. The initial conditions are x0 ∈Hnx

0 and θ0 ∈Θ0.
It is easy to see by repeated applications of the recursion
for xk that the system state evolves as

xk =

(∏k−1

t=0
A∗θt

)∗
x0+

∑k−1

t=0

(∏k−1

j=t+1
A∗θj

)∗
Hθtvt

= x̌k +
∑k−1

t=0
v̌t (29)

where the first addend x̌k on the right-hand side of the
equality is clearly related to the noiseless version of sys-
tem (1), while the other addend describes the contribu-
tion of the noise.

Let us indicate by Re[·] either the real part of a complex
number or, when applied to matrices, the operation of
taking the real part of each entry of a complex matrix. As
in the noiseless case, we find that the recursive equations
for qi(k) and Qi(k) for PTI dtMJLSs as in (1) again
have the same structure as their counterpart with time-
homogeneous exactly known TPMs (Costa et al., 2005,
pp. 50–52):

Proposition 15 In a dtMJLS (1) for all k∈T, j∈M

qj(k+1)=
∑N

i=1
pij(k)Aiqi(k)+

∑N

i=1
pij(k)Hiri(k) (30)

Qj(k+1) =
∑N

i=1
pij(k)AiQi(k)A∗i+∑N

i=1
pij(k)HiRi(k)H∗i +

2 Re

(∑N

i=1
pij(k)AiWi(k)H∗i

)
(31)

PROOF. See Appendix, Section A.7. 2

Following the same line as in the previous section, we
rewrite the recursive equation (31) for Qi(k) in a matrix
form. In particular, the recursive equation of Q(k) for
dtMJLSs that accounts for a process noise is obtained
by applying the equation (31) describing the dynamics
of Qi(k) (from Proposition 15), together with the defini-
tion of the linear transformation vec2(·), the correspon-
dent definition of the linear map vec(·), and the relevant
properties of the Kronecker product, to Q(k), defined
by (6). Notably,

vec2(Q(k+1)) = Λ(k)vec2(Q(k))+Γ(k)vec2(R(k))+

2 Re
(
Ξ(k)vec2(W (k))

)
(32)
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where Λ(k) is defined as in (26), R(k) is presented in
(8), W (k) is shown in (11), and

Γ(k) ,
(
PT (k)⊗ In2

x

) (⊕N
i=1

(
H̄i⊗Hi

))
(33)

Ξ(k) ,
(
PT (k)⊗ In2

x

) (⊕N
i=1

(
H̄i⊗Ai

))
(34)

From the repeated applications of (32), we obtain

vec2 (Q(k)) =

(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0)) +∑k−1

t=0

(∏k−1

j=t+1
Λ∗(j)

)∗
Γ(t)vec2(R(t)) +

2 Re

(∑k−1

t=0

(∏k−1

j=t+1
Λ∗(j)

)∗
Ξ(t)vec2(W (t))

)
(35)

Now we are ready to state the main result of this sec-
tion. We will show that MSS for system (1) is equivalent
to dtMJLS being a bounded linear operator that maps
`2-stochastic exogenous input signals into `2-stochastic
output signals.

Theorem 16 Given a dtMJLS (1) with unknown time-
varying TPM P (k)∈convVP, then ρ̂(VΛ)<1 if and only
if x={xk : k∈T}∈Hnx for every v={vk : k∈T}∈Hnv ,
and any initial condition x0∈Hnx

0 and θ0∈Θ0.

PROOF. See Appendix, Section A.8. 2

As before, this result represents a useful generalization
of the notion already known for time-homogeneous dt-
MJLS. In fact, when there is only one time-invariant
TPM, JSR corresponds to a spectral radius.

7 NASA F-8 Test Aircraft example

In this section, we present a practical example of dt-
MJLS, in which the TPs are likely to be subject to un-
certainties and time-varying characteristics. The data of
this example from the aerospace industry is borrowed
from Zhang, Yang, Shi & Zhu (2016, pp. 9 – 11) and ref-
erences therein. We consider the NASA F-8 test aircraft
at an attitude of 20000ft and a Mach number of 0.6.
The discrete-time state-space model of the test aircraft
in lateral-direction with the sampling time Ts=20 ms is

xk+1 = Aθkxk+Bθkuk +Hθkvk, with θk∈M={i}5i=1 ,

where each possible setting is represented by a system
mode, and for each i∈M

Ai=eAiTs , Bi=

∫ Ts

0

eAiTsBi, Hi=

[
I3
03

]
, with

A1 =



−2.6 0.25 −38 0 17 7

−0.075 −0.27 4.4 0 0.82 −3.2

0.078 −0.99 −0.23 0.052 0 0.046

1 0.078 0 0 0 0

0 0 0 0 −20 0

0 0 0 0 0 −20


,

A? =



2.6 0.25 38 0 17 7

0.075 0.27 4.4 0 0.82 3.2

0.078 0 0.23 0 0 0.046

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,Bi =



0 0

0 0

0 0

0 0

ai 0

0 bi


,

A2 =A1+0.5A?, A3 =A1−0.5A?,
A4 =A1+0.25A?, A5 =A1−0.25A?,

a1 =20, b1 =20; a2 =10, b2 =20; a3 =20, b3 =10;

a4 =40, b4 =20; a5 =20, b5 =50;

xk=
[
γr(k), γy(k), αs(k), ςr(k), δa(k), δr(k)

]T
,

uk=
[
δac(k), δrc(k)

]T
,

where ai and bi are the dimensional lateral stability
derivatives related to the incremental aileron and rudder
positions with reference to the fixed body axes, δac and
δrc are the aileron and rudder servo commands (rad), γr
and γy are the incremental roll and yaw rates (rad/s),
αs is the incremental sideslip angle (rad), ςr is the incre-
mental roll attitude (rad), while δa and δr are the incre-
mental aileron and rudder positions (rad), respectively.

The nominal and perturbed values for the TPM are

Pn =



0.4 0.2 0.2 0.1 0.1

0.2 0.4 0.1 0.2 0.1

0.1 0.1 0.4 0.2 0.2

0.2 0.1 0.2 0.4 0.1

0.1 0.2 0.1 0.2 0.4


, Pp =



0.42 0.19 0.19 0.1 0.1

0.19 0.42 0.1 0.19 0.1

0.1 0.1 0.42 0.19 0.19

0.19 0.1 0.19 0.42 0.1

0.1 0.19 0.1 0.19 0.42


,

while the bounded process noise vk is supposed to affect
only the incremental roll and yaw rates, and the incre-
mental sideslip angle, i.e.

vk=
[
∆γr(k),∆γy(k),∆αs(k)

]T
, where ∀k

∆γr∈ [−0.035, 0.035], ∆γy∈ [−0.009, 0.009],

∆αs∈ [−0.005, 0.005].

We observe that in this setting we have a typical situa-
tion for dtMJLSs, where there is an unstable operational
mode, with ρ(A2)> 1, but the switching system is sta-
ble (Costa et al., 2005, pp. 37 – 41). In particular, the
autonomous dtMJLS is stable for both nominal and per-
turbed values of the TPM, with ρ(Λn) = 0.999024 and
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ρ(Λp)=0.999023. It should be noted that the size of both
Λ is 180×180. Of course, the stability is guaranteed only
when the transition probabilities are assumed to be time-
invariant. From Theorem 12 and Remark 13, we would
not expect to be able to decide the stability of the dt-
MJLS through the computation of the JSR. However, by
using the JSR toolbox (Vankeerberghen et al., 2014) we
discover that the matrices Λn and Λp are triangularizable
under a common permutation of the entries of the ma-
trix (that is, their coordinate hyperplane is invariant), so
that it is possible to prune the related sets of blocks. It
turns out that the JSR can be computed in this case by
considering two real matrices of size 80×80, and we ap-
ply the ellipsoid method based on semidefinite program-
ming techniques to find that ρ̂({Λc,Λp})<0.999112, so
the dtMJLS is stable even when the transition probabil-
ities account for small time-varying perturbations, but
the decay rate is very close to 1.

In order to improve the performance, one can e.g. de-
sign a state-feedback controller uk=Kθkxk that for the
nominal transition probabilities provides a stabilizing
solution forH∞-control problem that takes into account
the bounded process noise, as detailed in Costa et al.
(2005, Chapter 7, pp. 143–166). For the system output
zk=Cθkxk+Dθkuk, with C∗i Ci=0.0001I6 andD∗iDi=I2
for all i∈M, and the disturbance attenuation level of 12,
the obtained state-feedback control gain matrices are in-
dicated by (Ki)

5
i=1. In the stability analysis of the con-

trolled dtMJLS, the system state matrices Ai are substi-
tuted with Âi=Ai+BiKi in (27b), so that the new decay

rates are bounded from below by ρ(Λ̂n)=0.992909, and

by ρ(Λ̂p) = 0.992887, respectively. Unfortunately, the

matrices Λ̂n and Λ̂p are not jointly triangularizable, so
the computation of the JSR involves the matrices of size
180×180, that are too big even for initialising the ellip-
soid method on our test system (a MacBook Pro (retina,
13-inch, late 2013) with a 2.4 GHz dual-core Intel Core
i5 processor, and 8 GB of 1600 MHz DDR3 RAM) within
a week. However, if we considered NASA F-8 test air-
craft to have just the first three operational modes and
the system matrices described at the beginning of this
section, with the values for the TPMs being for instance

P̃n =


0.5 0.25 0.25

0.25 0.50 0.25

0.25 0.25 0.50

, P̃p =


0.48 0.26 0.26

0.22 0.50 0.28

0.22 0.28 0.50

,
the application of the related H∞ state-feedback con-
trol gain matrices obtained in the same setting as before
would produce ρ(Λ̃n)=0.998702, and ρ(Λ̃p)=0.998695,
respectively. The size of new matrices would be 108×108,

and the fact that ρ̂
({

Λ̃c, Λ̃p

})
< 0.999244 could be es-

tablished in less than 62 hours on our test system. For
comparison, the computation of the bound on the JSR
of the matrices of size 80×80 with the same accuracy
requires around 8 hours.

With the constant growth of computational power and
an intense research on the computation of the JSR by
mathematical community, in the near future we expect
to be able to solve the stability analysis problem for sys-
tems with the size (of matrices associated to the second
moment of the system’s state) larger than 100×100 in a
much shorter amount of time.

8 Conclusions and future work

The conditions presented in this paper, based on the no-
tion of the JSR of the set of vertices of the polytope of
matrices characterizing the second moment of dtMJLS’s
state for all operational modes, permit to check whether
the autonomous system is stable, regardless of the pres-
ence of bounded perturbations on the system’s state it-
self. These results open up an unexplored research line
on PTI dtMJLSs related to problems of robust linear
quadratic regulation, optimal robust filtering, and sep-
aration of estimation and control.

A Appendix

It is useful to recall that for any A∈Fn,n, the `1 and `2
norms satisfy the following inequality (Horn & Johnson,
2012, p. 365): ‖A‖1 ≤ n ‖A‖2 (A.1)

We remind that for positive semi-definite matrices, the
trace dominates the `2 norm (De Klerk, 2002, p. 233):

∀A∈Fn,n0 one has that tr(A) ≥ ‖A‖2 (A.2)

In the following subsections we present all the proofs of
the results presented in this article. In particular, the
derivation of the expressions for qi(k) and Qi(k) pre-
sented in Proposition 9 is straightforward, but the for-
mal proof requires an additional lemma on inequality
between trace of any positive semi-definite matrix and
any matrix norm, which we present next.

Lemma 17 For any Q∈Fn,n0 we have that

tr(Q) ≤ n ‖Q‖ (A.3)

A.1 Proof of Lemma 17

The proof is based on the relationship between the trace,
eigenvalues and the spectral radius ρ(Q) of positive semi-
definite matrices. SinceQ is positive semi-definite, all its
eigenvalues are nonnegative real numbers. Thus, from
the definition of the absolute value for real numbers, the
property of the trace of being the sum of all the eigen-
values of a square matrix, and definition of the spectral
radius as the largest absolute value of the eigenvalues,
we have that tr(Q) ≤ nρ(Q). Then, let v ∈ Fn be the
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eigenvector associated to the maximal eigenvalue νmax

of Q, which for both real and complex-valued positive
semi-definite matrices equals to ρ(Q). By definition of
the eigenvalue, we have that Qv = νmaxv. By absolute
homogeneity of any vector norm and triangle inequality
of any matrix norm, we have for any νmax∈R0 that

νmax ‖v‖ = |νmax| ‖v‖ = ‖νmaxv‖ = ‖Qv‖ ≤ ‖Q‖ ‖v‖

Thus, ρ(Q)= |νmax|≤‖Q‖. Together with the first equa-
tion in the proof, this implies the thesis, and the lemma
is proved. 2

A.2 Proof of Proposition 9

The first statement can be proved by a sequential appli-
cation of (3), (22), definition of the expected value and
of the indicator function, linearity of expected value, def-
initions of the probability measure and the TP between
the operational modes of a dtMJLS.

The second statement can be proved starting from the
definition (5) of the matrix Qi(k), by following exactly
the same considerations made for the first statement.

For what concerns (25), the equality, stated in the com-
pact form of the matrix product in reverse order, comes
from the repeated applications of the recursive equation
(22) describing the evolution of the system’s state xk,
while the inequality is derived by applying the defini-
tions of the expected value and of the indicator function,
of the trace and of the Euclidean norm, the linearity of
the trace and of the expected value, (5), (A.3), triangle
inequality, and definition of 1-norm for N-sequences of
matrices. 2

A.3 Proof of Proposition 10

The result follows from Assumption 1 on time-varying
unmeasurable TPM P (k) of being polytopic, by direct
application of the related equation (2) and (bi-)linearity
of the Kronecker product, to the definition (26) of the
matrix Λ(k). 2

A.4 Proof of Theorem 11

We first prove the necessity of the presented condition
for the MSS. By hypothesis (16), ∀x0∈Hnx

0 and θ0∈Θ0,
limk→∞ E(xkx∗k)=0.

First of all, we observe that the elements of the main
diagonal of the positive semi-definite matrix xkx∗k are all
real and nonnegative. Formally, after indicating by xi(k)
the i-th element of xk ∈ Fnx,1, by the definition of the
conjugate transposition and the matrix multiplication,

we have that the elements of the main diagonal of the
matrix xkx∗k are

(xi(k)x̄i(k))
nx

i=1 ∈ Rnx
0 (A.4)

whereRnx
0 indicates an nx-dimensional linear space, with

entries in R0. From the definition (14) of the second
moment of xk and the definition (5) of Qi(k), we have

lim
k→∞

∑N

i=1
Qi(k) = lim

k→∞

∑N

i=1
E
(
xkx∗k1{θk=i}

)
= 0

Since limits of sequences behave well with respect to the
usual arithmetic operations, we have that∑N

i=1
lim
k→∞

E
(
xkx∗k1{θk=i}

)
= 0

From the definition of the indicator function in a set of
operational modes M, considered together with (A.4),
one has that, for each i∈M limk→∞ E

(
xkx∗k1{θk=i}

)
=

limk→∞Qi(k)=0. Thus, from the definition (6) of Q(k)
follows that

lim
k→∞

Q(k) = 0 (A.5)

The linear mapping vec2(·) is uniform homeomorphic
(Costa et al., 2005, p. 17). As a consequence, the conver-
gent behaviour of Q(k) is preserved by vec2(Q(k)), i.e.,

lim
k→∞

vec2(Q(k)) = 0

Applying (28) for the recursion of vec2(Q(k)), we obtain

lim
k→∞

(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0)) = 0 (A.6)

From Proposition 10, we have that Λ(k) ∈ convVΛ for
each k∈T. Thus, from Proposition 8, we have that (A.6)
holds for any Q(0) if and only if ρ̂(convVΛ)< 1. Then,
from Proposition 7 follows the thesis.

Now, let us prove that the presented condition is indeed
sufficient, by showing that the MSS of system (22) is
implied by ρ̂(VΛ) < 1. As the definition of MSS (16)
provides two requirements, one for the expected value,
and other for the second moment of the system’s state
xk, for k approaching infinity, the proof of sufficiency is
divided in two parts.

The first part of the proof follows the inverse pattern of
the proof of the necessity. We start with the expression
(28) for the recursion of vec2(Q(k)). By its definition,
provided by (6) and (5), Q(0) accounts for all possible
initial operational modes θ0∈M; it depends only on the
initial state x0 of the system, and the initial probabil-
ity distribution p0 of all the operational modes. Thus,
there always exists a Q(0)∈NFnx,nx

0 for any initial con-
dition, represented by the values of x0∈Hnx

0 and θ0∈Θ0.

10



Besides, the matrix Q(0) accounts also for any initial
probability distribution p0. Since, by Proposition 10,
Λ(k)∈convVΛ ∀k∈T, we have that

ρ̂(VΛ) < 1⇒ lim
k→∞

E(xkx∗k) = 0, ∀x0∈Hnx
0 , θ0∈Θ0

by Propositions 7 and 8, uniform homeomorphism be-

tween the spaces NFnx,nx

0 and FNn
2
x

0 through the map-
ping vec2(·), together with the application of the defini-
tions of matrices Q(k), Qi(k) and of the second moment
of xk, i.e., (6), (5) and (14), respectively.

To complete the proof, in this second part of the proof of
sufficiency we need to show that ρ̂(VΛ) < 1 implies that
limk→∞ E(xk) = 0, ∀x0 ∈ Hnx

0 , θ0 ∈ Θ0. From the first
part of the proof of sufficiency, we already have (A.5),
i.e., that the matrix Q(k) converges to the zero matrix as
k∈T approaches infinity. Then, the equation (25) from
Proposition 9 tells us that the value of the expected value
of ‖xk‖22 is bounded by ‖Q(k)‖1. Thus, we obtain that

limk→∞ E
(
‖xk‖22

)
=0. Since limits of sequences behave

well with respect to the usual arithmetic operations,
including multiplication, and thus, exponentiation, we
have that limk→∞ E(‖xk‖2)=0, which implies the thesis
and concludes the proof. 2

A.5 Proof of Theorem 12

Let us indicate by Qn,n the set of all square matrices of
order n with entries in Q. Our proof works by reduction
from the matrix semigroup stability, which is well known
to be NP-hard (Jungers, 2009, Theorem 2.4 and Theo-
rem 2.6). In this problem, one is given a set of two matri-
ces SM ={M,M′}⊂Qn,n such that M=[mij ], M′=[m′ij ],
and for any i, j∈Z+, mij ∈Q0 and m′ij ∈Q0, i.e., the en-
tries of the two square matrices of order n are all nonneg-
ative rational numbers. Then, one is asked whether the
product of length k of any sequence of matrices M,M′

converges to the zero matrix when k→∞.

Let us consider a particular instance of the matrix semi-
group stability problem. We will build an autonomous
noiseless dtMJLS (22) with a set of (scalar) state ma-
trices {ai ∈ R0 : i, n,N ∈ Z+, N = n+1, i ≤ N}, with
unknown and time-varying TPMs P (k)∈ conv VP, with

VP = {P, P ′} ⊂ RN,N , where P = [pij ] and P ′ = [p′ij ]
are stochastic matrices (i.e., for any i, j ∈Z+, pij ∈R0,
p′ij ∈R0, and such that any row of these two matrices is
a distribution) and prove that the constructed dtMJLS
(22) is MSS if and only if the set SM is stable. By (27) it

follows that Λ =PT
(⊕N

i=1 a
2
i

)
, Λ′= (P ′)T

(⊕N
i=1 a

2
i

)
,

and our construction is as follows. Assign arbitrarily for
each j ∈Z+, s.t. j≤n, a2j ∈Q0 : a2j ≥nmaxi{mij ,m

′
ij :

i ∈ Z+, i ≤ n}. Assign for all i, j ∈ Z+ s.t. i ≤ n, j ≤ n
pij ,

mji

a2
i

, p′ij ,
m′

ji

a2
i

. Obviously, pij , p
′
ij ∈ Q0, pij ≤ 1

n ,

and p′ij ≤ 1
n . Then, assign for every i ∈ Z+ s.t. i ≤ N

piN , 1−
∑n
j=1 pij , p

′
iN , 1−

∑n
j=1 p

′
ij . Clearly, by con-

struction piN , p
′
iN ∈Q0, piN ≤1, p′iN ≤1. As a next step,

assign aN , 0. Finally, for each j ∈ Z+, j ≤ N assign

pNj = p′Nj ,
1
N . As a consequence of the above assign-

ments, it follows that P , P ′ are stochastic matrices and
that

Λ =

[
M 0

R 0

]
, Λ′ =

[
M′ 0

R′ 0

]
,

with R,R′∈Q1,n, having nonegative elements. By The-
orem 11, (22) is MSS if and only if the JSR of the set
{Λ,Λ′} is smaller than 1. From this, it is straightforward
to see that (22) is MSS if and only if SM is stable. This
concludes the proof. 2

Remark 18 It is not known (to the best of our knowl-
edge) whether the matrix semigroup stability problem is
Turing decidable (say, for matrices with rational nonneg-
ative entries). Thus, the above proof does not allow us to
conclude that MSS is undecidable for dtMJLSs with poly-
topic unknown and time-varying TPMs. This is why we
only claim that the stability problem is NP-hard.

A.6 Proof of Theorem 14

In this article we are working on a finite-dimensional lin-
ear spaces, for which all norms are equivalent. Thus, in
the following proof we will make use of Euclidean and
grid norms for vectors, `1 and `2 norms for matrices,
and 1-norm for sequences of matrices. We invite an in-
terested reader to see Horn & Johnson (2012, Section
5.6, pp. 340–370) for a detailed presentation of the topic
of matrix norms, especially as a reference for the exact
constants used in the inequalities involving the equiva-
lent norms.

It is trivially verified that the second assertion in the
statement of the theorem implies the third one, i.e.,
EMSS ⇒ SS. The result follows directly from the defi-
nitions of EMSS (17) and SS (18).

Thus, let us show that the third statement implies the
first, that is, SS ⇒ MSS. We have already seen in the
proof of (25) in Proposition 9 that from the definition
of the Euclidean norm for vectors and the definition of
trace as a linear mapping (together with the definition of
the matrix product and linearity of the expected value),
one obtains that

E
(
‖xk‖22

)
=tr(E(xkx∗k))=E(x∗kxk)≥0 (A.7)

Then, the absolute convergence of a series in a normed
linear space implies the convergence of a series in the
same space. So, from the definition of the stochastic sta-
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bility (18) and (A.7), one has that, for all initial condi-
tions x0∈Hnx

0 and θ0∈Θ0

lim
k→∞

tr(E(xkx∗k)) = lim
k→∞

E(x∗kxk) = 0

As a consequence (since xkx∗k defines a positive semi-
definite matrix, for which, by Horn & Johnson (2012,
Corollary 7.1.5, p. 430), tr(xkx∗k)=0 if and only if xkx∗k=
0), this implies limk→∞ E(xkx∗k)=0.

We have already seen in the proof of the sufficiency of
Theorem 11 that this last statement implies MSS of the
system (22). Hence, this part of the proof is concluded.
Moreover, as a result, we have also that EMSS⇒ MSS.

Now, let us show that the opposite is true as well, that
is, MSS ⇒ EMSS. From Theorem 11 we know that if
the system (22) is MSS, then ρ̂(VΛ)<1. Since from the
definition of the JSR

lim
k→∞

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1
k

≤ ρ̂(VΛ)

by the radical test (a.k.a. Cauchy root test) for infinite
series we state that, for some integer k′≥0

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥<ζk, ∀k≥k′, ∀ζ∈R+ :ζ∈(ρ̂(VΛ), 1) ,

β′ = ζ−k
′

sup
P∈Pj(VΛ), 0≤j≤k′

‖P‖, β′ ≥ 1,

where Pj(VΛ) indicates the set of all possible products
of length j whose factors are elements of VΛ, as formally
defined by (20). So, we obtain that

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥ ≤ β′ζk, ∀k∈T (A.8)

Now, in the proof of (25) in Proposition 9 we have seen
that

E
(
‖xk‖22

)
≤ nx

∑N

i=1
‖Qi(k)‖ (A.9)

To proceed with our proof, we use the `1-norm as the
particular norm for Qi(k), which we are going to exam-
ine next. We indicate by Λ[(i−1)n2

x+1,in2
x]• a matrix ob-

tained by taking nx consecutive rows (starting from the
((i − 1)n2x + 1)-th row, with i∈Z+, i≤N) of Λ. From
the recursion (28) for Q(k), by using the linear mapping
vec2(·), the definitions of the `1-norm, the matrix prod-
uct, the sub-multiplicative property of matrix norms and

triangle inequality, we have that

‖Qi(k)‖1 = ‖vec(Qi(k))‖1

=

∥∥∥∥∥
(∏k−1

t=0
Λ∗(t)

)∗
[(i−1)n2

x+1,in2
x]•

vec2(Q(0))

∥∥∥∥∥
1

≤
∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1

∥∥vec2(Q(0))
∥∥
1

(A.10)

since the matrix norm of a submatrix is always less than
or equal to a norm of the whole matrix.

Since (A.10) is valid for each i∈M, we rewrite (A.9) as

E
(
‖xk‖22

)
≤nxN

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1

∥∥vec2(Q(0))
∥∥
1

(A.11)

From the definition of the `1-norm, it is trivial to see
that∥∥vec2(Q(0))

∥∥
1

=
∑N

i=1
‖vec(Qi(0))‖1 =

∑N

i=1
‖Qi(0)‖1

(A.12)
At this point, we recall that the `1-norm is related to the
`2-norm by the inequality (A.1), i.e.,

‖Qi(0)‖1 ≤ nx ‖Qi(0)‖2 (A.13)

Since by its definition (5), Qi(0)∈Fnx,nx for each i∈M,
we apply the property (A.2) of the trace of a positive
semi-definite matrix, obtaining that

‖Qi(0)‖2 ≤ tr(Qi(0)) (A.14)

After combining (A.11) with (A.12), (A.13), and (A.14),
we obtain

E
(
‖xk‖22

)
≤ n2xN

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1

∑N

i=1
tr(Qi(0))

(A.15)
Within the proof of (25) in Proposition 9, we have seen
that (with k=0)

∑N

i=1
tr(Qi(0)) = E

(
‖x0‖22

)
= ‖x0‖22 (A.16)

Then, by putting together (A.15), (A.16), and (A.8), we
obtain

E
(
‖xk‖22

)
≤ n2xNβ′ζk ‖x0‖22 = βζk ‖x0‖22

This proves the assertion that MSS⇒ EMSS also for the
dtMJLSs (22) with time-varying uncertain TPs. All the
remaining implications follow from the already proved
ones. Thus, the proof is concluded. 2
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A.7 Proof of Proposition 15

The proof is very similar to the proof of Proposition 9,
so we only outline the procedure.

The first statement is obtained from the definition (3) of
the vector qi(k) of expected values of the system state
variables in correspondence of the i-th operational mode,
the recursive equation (1) describing the evolution of the
system’s state xk, the definition (4) of the vector ri(k)
of expected values of the process noise related to the
i-th operational mode, with i ∈M, by linearity of the
expected value.

The second statement can be proven in the same man-
ner, i.e., by linearity of the expected value, from the def-
inition (5) of the matrix Qi(k), the state-space represen-
tation (1) of the dtMJLS, the definition (7) of the matrix
Ri(k), and the definition (10) of the matrix Wi(k), af-
ter remembering the properties of complex conjugation,
and the fact that the sum of a complex number with its
complex conjugate gives us two times the real part of the
complex number. 2

A.8 Proof of Theorem 16

To prove the necessity (i.e., ρ̂(VΛ) < 1 ⇒ x ∈ Hnx

∀ v ∈ Hnv , x0 ∈ Hnx
0 , θ0 ∈ Θ0), all we have to show is

that ‖x‖2 <∞ since on the considered stochastic basis

(Ω,G, (Gk) ,Pr) we clearly have that (xt)
k
t=0 ∈ H

nx

k for
each k ∈ T. We start by looking at the equation (29)
describing xk as a function of x0, noticing that the first
addend x̌k on the right-hand side of the equality is clearly
related to the noiseless version of system (1). The other
addend describes the contribution of the noise. So, the
proof of necessity is divided into three parts: the first
one is related to the noiseless part of the evolution of the
system’s state x̌k, the second part is connected to the
partial dynamics due to the noise, i.e., v̌t, while the last
part corresponds to the combination of the previous two.

By hypothesis ρ̂(VΛ)<1, and for the first part we apply
the same steps of the proof of the fact that, for dtMJLS
without process noise, EMSS implies MSS. This proce-
dure is illustrated in the proof of Theorem 14, where it
is shown that for some k′∈T, there always exists a k∈T,
k≥k′, such that for any N,nx∈Z+,

‖x̌k‖22 =E
(
‖x̌k‖22

)
≤βζk‖x0‖22 =Nn2xβ

′ζk‖x0‖22 (A.17)

with ζ∈R+ such that ζ∈(ρ̂(VΛ), 1) (A.18)

and β′∈R+, β′≥1, being defined as

β′ = ζ−k
′

sup
P∈Pj(VΛ), 0≤j≤k′

‖P‖ (A.19)

where Pj(VΛ) indicates the set of all possible products
of length j whose factors are elements of VΛ, as formally
defined by (20).

Regarding the second part, which is related to the evo-
lution in time of the partial contribution of the noise,
the procedural steps are similar.

For each t∈Tk−1 we consider v̌t =
(∏k−1

j=t+1A
∗
θj

)∗
Hθtvt.

It is clear from the previous expression that v̌t behaves
as an autonomous noiseless dtMJLS with the initial con-
dition given byHθtvt. The second moment for this initial
condition, i.e., E

(
Hθtvt (Hθtvt)

∗)
, equals

∑N

i=1
E
(
Hθt

(
vtvt1{θt=i}

)
H∗θt

)
=
∑N

i=1
HiRi(t)H

∗
i pi(t)

So, it is trivial to verify that the second moment of v̌t is
already computed in matrix form in the equation (35)
describing the evolution of the second moment of the au-
tonomous system (1) with a process noise. After defining

Ři(t),E
(
v̌tv̌
∗
t1{θt=i}

)
∈Fnx,nx

0 and Ř(t),
(
Ři(t)

)N
i=1
∈

NFnx,nx

0 , and recalling that Γ(t) is given by (33), we ob-
tain that

vec2
(
Ř(t)

)
=

(∏k−1

j=t+1
Λ∗(j)

)∗
Γ(t)vec2(R(t))

=

(∏k−1

j=t+1
Λ∗(j)

)∗
vec2(HR(t)H∗)

where R(t) and Ri(t) are expressed via (8) and (7), re-
spectively, and HR(t)H∗ is represented by (9). From
here on, we follow the line of the proof of Theorem 14.
Thus, we only outline the main points, without explain-
ing every passage. First of all, we make the same con-
siderations used in the proof of the third statement (25)
in Proposition 9, especially the inequality (A.3) between
the trace of a matrix and any norm of the same matrix,
proved in Lemma 17, obtaining that ∀t∈Tk−1

‖v̌t‖22 =E
(
‖v̌t‖22

)
=
∑N

i=1
tr
(
Ři(k)

)
≤nx

∑N

i=1

∥∥Ři(k)
∥∥

which holds for any equivalent matrix norm, including
`1-norm. We apply `1-norm to Ři(k), obtaining that

∥∥Ři(k)
∥∥

1
=

∥∥∥∥∥
(∏k−1

j=t+1
Λ∗(j)

)∗
[(i−1)n2

x+1,in2
x]•

vec2(HR(t)H∗)

∥∥∥∥∥
1

≤
∥∥∥∥(∏k−1

j=t+1
Λ∗(j)

)∥∥∥∥
1

∥∥vec2(HR(t)H∗)
∥∥
1

Since the previous inequality is valid ∀i∈M, we write

‖v̌t‖22≤nxN
∥∥∥∥(∏k−1

j=t+1
Λ∗(j)

)∥∥∥∥
1

∥∥vec2(HR(t)H∗)
∥∥
1

(A.20)
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From the definition of the `1-norm, it follows that∥∥vec2(HR(t)H∗)
∥∥
1

=
∑N

i=1
‖HiRi(t)H

∗
i ‖1

Recollecting that the `1-norm is related to the `2-norm
by the inequality (A.1), we have that

‖HiRi(t)H
∗
i ‖1 ≤ nx ‖HiRi(t)Hi‖2

As before, by construction HiRi(t)H
∗
i ∈F

nx,nx

0 for each
i∈M. Thus, we apply the property (A.2) of the trace of
a positive semi-definite matrix, together with the defini-
tion (7) of Ri(t), obtaining that

‖HiRi(t)H
∗
i ‖2≤tr

(
HiE

(
vtv
∗
t1{θt=i}

)
H∗i
)

Consequently, from the previous three equations, by lin-
earity of the trace and definition of the max-norm on the
linear space made up of all N-sequences of either real or
complex matrices, we obtain that∥∥vec2(HR(t)H∗)

∥∥
1
≤nx ‖H‖2max ‖vt‖

2
2

Then, by the radical test for infinite series, valid for all
equivalent matrix norms, we also have that∥∥∥∥(∏k−1

j=t+1
Λ∗(j)

)∥∥∥∥
1

≤ β′ζk−t−1

where ζ and β′ are those defined by (A.18) and (A.19),
respectively. Putting together both parts of (A.20), we
obtain that

‖v̌t‖22 ≤ Nn
2
xβ
′ζk−i−1 ‖H‖2max ‖vt‖

2
2 (A.21)

which holds for each t∈Tk−1. So, we have (29) together

with bounds on ‖x̌k‖22 expressed by (A.17) and on ‖v̌t‖22,
given by (A.21). By triangle inequality, we have that

‖xk‖2 ≤ ‖x̌k‖2 +
∑k−1

t=0
‖v̌t‖2 .

We still need to show that ‖xk‖2<∞. From now on, in
this last part of the proof of the necessity, we follow the
steps of the proof provided in Costa et al. (2005, The-
orem 3.34, pp. 55-57) for time-homogeneous dtMJLSs
with bounded process noise. Applying the bounds ob-
tained for ‖x̌k‖22 in (A.17) and for ‖v̌t‖22 in (A.21), and
also considering the expressions (A.18), (A.19) of re-
spectively ζ and β′, we can state that there exist ζ ∈
(ρ̂(VΛ), 1) and β′ ≥ 1 s.t. ‖xk‖2 ≤

∑k
t=0 ζk−tβt, with

ζk−t ,
√
ζk−t, βt , nx

√
Nβ′‖H‖max ‖vt−1‖2 for t ≥ 1,

and β0 , nx
√
Nβ′ ‖x0‖2. We set a , (ζi)

k
i=0 and b ,

(βi)
k
i=0. Since a ∈ `1 (i.e.

∑∞
i=0 |ζi| < ∞) and b ∈ `2

(that is,
∑∞
i=0 |βi|2 <∞), it follows that the convolu-

tion c, a ∗ b= (ci)
k
i=0, ci,

∑i
t=0 ζi−tβt, lies itself in `2

with ‖c‖2≤‖a‖1‖b‖2 (see e.g. Costa et al. (2005, p. 56)).
Hence,

‖x‖2 =

√∑∞

k=0
E
(
‖xk‖22

)
≤
√∑∞

i=0
c2i = ‖c‖2 <∞

This concludes the proof of necessity.

To prove the sufficiency (that is, x ∈ Hnx ∀ v ∈ Hnv ,
x0∈Hnx

0 , θ0∈Θ0 ⇒ ρ̂(VΛ)<1) we observe that, by hy-

pothesis, ‖x‖22 =
∑∞
k=0 E

(
‖xk‖22

)
<∞ for all v ∈Hnv ,

x0∈Hnx
0 , and θ0∈Θ0. Since the absolute convergence of

a series in a normed linear space implies the convergence
of a series in that space, by Megginson (1998, Proposition
1.3.7) we have that limk→∞ E(xkx∗k)=0 for all x0∈Hnx

0 ,
θ0 ∈Θ0, and for any v∈Hnv . Since this last statement
holds for every v∈Hnv , we can make vk=0 for all k∈T
in the state-space representation of the autonomous dt-
MJLS (1), obtaining the noiseless model (22). Thus, we
have exactly the same conditions found at the beginning
of the proof of necessity of Theorem 11. Application of
the procedure illustrated there brings us to the thesis
and concludes our proof of sufficiency. 2

References

Aberkane, S. (2011). Stochastic stabilization of a class
of nonhomogeneous Markovian jump linear systems,
Systems & Control Letters 60(3): 156–160.

Ahmadi, A. A. & Jungers, R. M. (2016). Lower bounds
on complexity of Lyapunov functions for switched
linear systems, Nonlinear Analysis: Hybrid Systems
21: 118–129.

Barabanov, N. E. (1988). On the Lyapunov exponents
of discrete inclusions, Automation & Remote Control
49(2, 3, 5): 40–46, 24–29, 17–24. In Russian.

Berger, M. A. & Wang, Y. (1992). Bounded semigroups
of matrices, Linear Algebra & its Applications 166: 21–
27.

Bolzern, P., Colaneri, P. & De Nicolao, G. (2010).
Markov jump linear systems with switching transition
rates: mean square stability with dwell-time, Auto-
matica 46(6): 1081–1088.

Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V.
(1994). Linear matrix inequalities in system and con-
trol theory, Vol. 15 of Studies in Applied and Numeri-
cal Mathematics, SIAM.

Chitraganti, S., Aberkane, S. & Aubrun, C. (2013).
Mean square stability of non-homogeneous Markov
jump linear systems using interval analysis, European
Control Conference (ECC), IEEE, pp. 3724–3729.

Colaneri, P. (2009). Dwell time analysis of deterministic
and stochastic switched systems, European Journal of
Control 15(3): 228–248.

Costa, O. L., Assumpção, E. O., Boukas, E. K. & Mar-
ques, R. P. (1999). Constrained quadratic state feed-
back control of discrete-time Markovian jump linear
systems, Automatica 35(4): 617–626.

14



Costa, O. L., Fragoso, M. D. & Marques, R. P. (2005).
Discrete-time Markov jump linear systems, Springer.

De Klerk, E. (2002). Aspects of semidefinite program-
ming: interior point algorithms and selected applica-
tions, Vol. 65 of Applied Optimization, Springer.

De Souza, C. E. (2006). Robust stability and stabiliza-
tion of uncertain discrete-time Markovian jump lin-
ear systems, IEEE Transactions on Automatic Con-
trol 51(5): 836–841.

Garey, M. R. & Johnson, D. S. (2002). Computers
and Intractability: A Guide to the Theory of NP-
Completeness, Vol. 29 of Series of Books in the Math-
ematical Sciences, W. H. Freeman and Company.

Guglielmi, N., Wirth, F. & Zennaro, M. (2005). Complex
polytope extremality results for families of matrices,
SIAM Journal on Matrix Analysis and Applications
27(3): 721–743.

Hartfiel, D. J. (1998). Markov Set-Chains, Vol. 1695 of
Lecture Notes in Mathematics, Springer.

Horn, R. A. & Johnson, C. R. (2012). Matrix analysis,
2nd edn, Cambridge University Press.

Isaacson, D. L. & Madsen, R. W. (1976). Markov chains
theory and applications, John Wiley & Sons.

Jungers, R. M. (2009). The joint spectral radius: theory
and applications, Vol. 385 of Lecture Notes in Control
and Information Sciences, Springer.

Jungers, R. M., Cicone, A. & Guglielmi, N. (2014). Lifted
polytope methods for computing the joint spectral ra-
dius, SIAM Journal on Matrix Analysis and Applica-
tions 35(2): 391–410.

Karan, M., Shi, P. & Kaya, C. Y. (2006). Transition
probability bounds for the stochastic stability robust-
ness of continuous- and discrete-time Markovian jump
linear systems, Automatica 42(12): 2159–2168.

Kubrusly, C. S. (2001). Elements of operator theory, 2nd
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