
Model Predictive Control for Speed Regulation of Autonomous Vehicles
at Road Intersections and Performance Evaluation in a V2X

Communication Scenario

Angelo Fasciani1, Yuriy Zacchia Lun1, Francesco Smarra2 and Alessandro D’Innocenzo1

Abstract— The paper aims at evaluating the performance of
a centralised control strategy, based on a scheduling procedure
and MPC (model predictive control), that regulates the crossing
of a four-way intersection by autonomous vehicles avoiding
collisions in a V2X (vehicle-to-everything) communication sce-
nario. In particular, we evaluate the performance considering
different communication channel gain conditions, with packet
loss process implemented through a Bernoullian probabilistic
model based on the V2X communication protocol, as well as
the impact of transmitting to the vehicles control aggregated
commands of multiple future time horizons.

I. INTRODUCTION

Road crashes are still among the leading causes of non-
natural death [1], and more specifically, accidents happening
at urban intersections are a problem of interest since they
could be prevented by adequately controlling the crossing
of cars. Recent advancements in telecommunications and
smart vehicle technology enable the development of control
systems to regulate traffic flows: modern vehicles integrate
many electronic components such as sensors (GPS, lidar,
radar, cameras, etc.) and actuators that allow the coordination
of intersection passage to reduce accidents and fuel or battery
consumption.

This paper focuses on implementing a centralised control
strategy based on a sub-optimal sorting algorithm and on
model predictive control (MPC) that regulates the flow
of autonomous vehicles in an urban intersection, ensuring
collision avoidance and a sub-optimal crossing time mini-
mization. The non-idealities induced by the V2X (Vehicle-
to-Everything) communication protocol are considered via
an appropriate packet loss modeling framework.

Previous work. Other examples of centralised control for
urban intersections that can be found in the literature are
[2], [3] in which the problem of collision avoidance is
treated as a verification problem and then translated into
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a scheduling one to be solved by a commercial tool, but
the communication protocol is not taken into account. In
[4], accidents are prevented by minimizing the overlapping
of vehicles’ trajectories within the intersection: also in this
paper, the communication protocol is not taken into ac-
count. [5] provides another example of centralised MPC
for collision avoidance (plus an optimal crossing sequence
algorithm), shaping the problem as queue management: each
lane approaching the intersection is treated as a queue, with
arrivals considered as an external disturbance and departures
as the regulated variable. [6] proposes a centralised control
system where the crossing time is minimized by ordering
vehicles in categories based on non-colliding trajectories at
the intersection and scheduling groups of cars within their
category. [7] implements a hybrid approach, meaning that
a central scheduler managing vehicles’ safe and optimized
passage works alongside an algorithm running on each vehi-
cle: the algorithm operates a collision warning that considers
only the nearest cars.

Among the decentralised approaches, in [8], [9], [10] and
[11] each vehicle solves a two-level optimal problem to pass
the intersection minimizing the delays and the control effort.
Cars exchange data to ensure safety, but no communication
non-idealities are considered. [12] developed a distributed
MPC and a priority-based strategy where the scheduler
favours faster vehicles closer to the intersection. A similar
solution was also proposed in [13]. [14] focuses on a multi-
objective optimization problem for intersection coordination,
solved in a receding horizon framework.

Communication non-idealities are explored in [15], where
the medium access control (MAC) protocol resources shared
by vehicles of a platoon are reserved with a semipermanent
counting system. For each vehicle the reservation and com-
munication process is modeled by a Markov chain. In [16],
packet loss is described by finite-state Markov chains to cope
with the fast, time-varying nature of vehicle-to-vehicle (V2V)
communications: the authors chose the Nakagami fading
model to derive the probability matrix and the steady state
distribution. A slightly different technique is considered in
[17], where pseudo-Markov chains (PMC) are used to model
packet losses, with the PCM parameters derived from both
the Rician fading representation and real-world measurement
data. Finally, [25] and [26] used finite-state Markov channels
to model packet loss processes on sensing and actuation
links. They analytically solved the optimal output and state-
feedback problems, the second involving the generalized



packet dropout compensation strategy at the actuators’ end.
Paper contribution. In this paper, we develop a centralised

MPC solution to guarantee the safe and efficient flow of fully
autonomous vehicles at an intersection: this type of con-
trol provides robustness with respect to non-idealities such
as emergency brakes, drivers not following the suggested
speeds, etc. We include a sub-optimal sorting algorithm
to minimize the crossing time while keeping the problem
quadratic and thus solvable via standard tools with small
sampling times. Also, we thoroughly evaluate the system’s
performance in the event of packet losses by modelling the
communication channel with a Bernoulli model congruent
with the 5G V2X protocol to offer a detailed insight into
this crucial phenomenon. We also investigate the impact of
the simultaneous transmission of actuation commands with
different future time horizons on the system’s performance
and safety, taking into account that sending larger packets
is associated with larger packet loss probability and com-
munication delays. In this sense, we advance the state of
the art by developing a comprehensive methodology that (1)
implements a control technique that can be applied in real-
time, is robust to the most common disturbances for this
class of problems and whose safeness and liveness have been
validated via extensive Monte Carlo simulation, and (2) also
considers a packet loss model, referring to the most recent
and used version of the 5G V2X communication protocol.

Paper organization. The paper is organised as follows: in
Section II, we present the intersection model and the dynamic
model of the vehicles. The design of the control algorithm
is reported in Section III, while Section IV is dedicated to
the description of the communication scenario. The paper
ends with simulation results in Section V, where we tested
the safeness of the control algorithm, and with Section VI,
which is dedicated to conclusions and future work.

II. PROBLEM STATEMENT

Fig. 1. Illustration of the intersection scheme: a 4-way scenario is shown
with the two main operative zones (merge in red, control in yellow). Vehicles
inside the control zone communicate with the controller situated in the exact
centre of the intersection.

We consider a urban intersection where 4 roads approach
orthogonally, as depicted in Fig. 1. Each road consists of
two lanes associated to opposite travel directions: lanes are
numbered from 1 to 8 clockwise, starting from the top-left.
The main areas to deal with the crossing problem are the
following:

• the control zone is the yellow square in Fig. 1 with side
L centered in the middle of the intersection: it represents
the space where the vehicles can communicate with the
controller;

• the merge zone is the red square in Fig. 1 with side l: it
consists of the surface where roads overlap and lateral
collisions may occur.

We assume that the centralised controller is located in the
middle of the intersection. The goal is to track the speed
trajectories of the vehicles from the moment they enter the
control zone until they exit the merge zone, to fulfil safe and
efficient intersection flow. We refer to vehicles in this state as
active. After the completion of the crossing, they can return
to their previous driving strategy.

To this end, the nk vehicles inside the control zone at time
k exchange data via the V2X protocol with the control unit.
Specifically, they send a packet of metadata at their entrance
containing their ID, the lane where they are coming from,
the one they want to reach, and the timestamp of their arrival
into the control zone. Moreover, they send information about
their state (position and velocity), which is assumed fully
observable, at each time step until the crossing is completed.
Each vehicle is modelled as a discrete-time double integrator,
with sampling time τs and considered as a point mass moving
along a straight line, flawlessly following its trajectory: this
is due to the fact that each vehicles is responsible for driving,
while the centralised controller only regulates the modulo of
the speed, and not its direction. The associated dynamics for
each vehicle i are:

xi(k + 1) = Axi(k) +Bui(k), k ∈ N, (1)

with A =

[
1 τs
0 1

]
and B =

[
τ2
s

2
τs

]
.

The state xi(k) = [pi(k) vi(k)]
′ ∈ R2 consists of the car

position and speed, while the control input ui(k)∈R is the
recommended acceleration. The overall dynamics for the nk

vehicles inside the control zone at time k are given by the
aggregation of the individual cars’ dynamics, resulting in:

x(k + 1) = Akx(k) +Bku(k), (2)

where Ak and Bk are diagonal block matrices whose nk

blocks are given by matrices A and B, respectively. Thus, the
state vector x(k)= [x1(k) x2(k) · · · xnk

(k)]′ is composed
by all the states of the nk vehicles. Similarly, the control
vector u(k)= [u1(k) u2(k) · · · unk

(k)]′ is the aggregation
of all the control inputs of the active vehicles.

Remark 1: Note that the dimensions of x(k) and u(k)
change over time according to nk. In this paper, as we do not
suppose to know in advance when and how many vehicles



will enter the control zone: as a consequence, when solving
MPC, we assume that matrices Ak and Bk do not change
over the horizon, i.e., Ak+j = Ak and Bk+j = Bk, j =
0, . . . , N − 1. When a new car enters the intersection, a new
MPC problem is formalised with matrices Ak and Bk of
appropriate dimensions.
We will assume that the vehicles’ speed is constrained in
the compact set V = [0, vmax] to avoid reverse gear (lower
bound) and guarantee driving comfort/speed limits (upper
bound). We will also assume that the vehicles’ acceleration
is constrained in the compact set U = [umin, umax], where
umax represents the largest tolerated acceleration and umin

the most intense admitted braking.

III. CONTROLLER DESIGN

To solve the problem of safe and efficient intersection
crossing, we developed a two-stage algorithm, composed of a
(sub-optimal) scheduler and an MPC solvable via Quadratic
programming (QP). The first stage, the scheduler, aims
to reduce the time required to empty the merge zone by
prioritizing the vehicles that, on the basis of current position
and velocity, need less time to exit the merge zone. Then, the
order for the vehicles to leave the control zone is translated
into linear constraints for the MPC algorithm to keep the
computation times acceptable using a standard QP solver.

A. Scheduler

The scheduler has the objective to sort the nk active
vehicles, and consists of two steps. First, cars are ordered
by considering the estimated time required to complete the
intersection crossing, assuming that each vehicle is taken
to maximum velocity vmax with maximum acceleration
starting from its current state values. Then, a second sorting
step is applied that considers the relative positions of the
vehicles within the same lane to avoid overpositioning. The
scheduling strategy is described in detail in Algorithm 1.

Algorithm 1
1: Input: p(k), vmax, amax

2: Output: idxs

3: tarr = []
4: for all i ∈ {1, . . . , nk} do
5: tarr,i = proj(pi(k), vmax, amax)
6: end for
7: [tsarr, idx

s] = sort(tarr)
8: for all i ∈ {1, . . . , nk} do
9: j = pred(i)

10: if tsarr,i ≤ tsarr,j then
11: idxs = [idxs

1:i−1, idx
s
i+1:j , idx

s
i , idx

s
j+1:end]

12: end if
13: end for
14: return idxs, and use it in constraint (6)

The first sorting step is illustrated in lines 3 to 7, where the
vector tarr (i.e., the arrival time estimated for each vehicle)
is filled with the projections proj() of each vehicle arrival
time. The function proj() simulates the evolution of each

active car state by using the dynamic model to compute how
many time steps are required to complete the crossing of the
merge zone, assuming that from its current state the vehicle
is taken to vmax accelerating at amax. The maximum speed
is then kept constant until exiting the merge zone. Then tarr
is sorted in ascending order generating tsarr (i.e., the ordered
vector of times needed by each vehicle to exit the merge
zone) and idxs (i.e., the ordered vector of the corresponding
indeces). The second sorting step, illustrated in lines 8 to 13,
reorders idxs to avoid possible conflicts due to scheduled
vehicles on the same lane: e.g., if vehicle i is behind vehicle
j but has been scheduled before because of a shorter arrival
time, then vehicle i will collide with vehicle j: for this reason
vehicle i has to be rescheduled to arrive after vehicle j. In the
algorithm, this is considered using function pred(), where
j = pred(i) means that vehicle j precedes vehicle i.

B. Model Predictive Control

Given the crossing order provided by the scheduler via
Algorithm 1 the MPC problem (3)–(12) can be formulated
to solve an optimal crossing problem of the merge zone as
follows:

min
u

N−1∑
j=0

(
∥vk+j+1− vr∥2Q+∥uk+j∥2R

)
+λ∥ε∥2 (3)

s.t.: xk+j+1 = Akxk+j +Bkuk+j (4)
pi,k+j+1 ≥ pν,k+j+1 + dsafe, ν = pred(i) (5)
pi,k+N = plim + ρi + εi, i ∈ idxs

2:nk
(6)

vk+j+1 ∈ V, (7)
uk+j ∈ U , (8)
εi ≥ 0 i = 1, . . . , nk (9)
xk = x(k) (10)
j = 0, . . . , N − 1 (11)
u = uk, uk+1, . . . , uk+N−1 (12)

The cost function consists of a weighted sum of the vehi-
cles’ deviation from a speed reference vr ∈ Rnx and of the
control effort: the speed reference for each vehicle is equal
to vmax (i.e., vr,i = vmax, i = 1, . . . , nx) to maximise the
intersection throughput, while the norm of the control input
is considered to penalise intense accelerations/decelerations
(i.e., improving driving comfort and reducing energy con-
sumption). The slack variables vector ε ∈ Rnx is used to
ensure recursive feasibility despite the constraint (6). Note
that, to avoid collisions during the crossing of the merge
zone, we imposed constraint (6) on the final positions of
the cars to allow only one car at a time to be in the merge
zone. The prediction horizon N is imposed equal to the time
needed by the first scheduled car to leave the merge zone.
All the other vehicles, from the second to the last, must keep
a certain distance ρi = tarr,1vi(k + N) = l

vmax
vi(k + N)

from the beginning of the merge zone, indicated by plim.
The value is cumulative so that a cascade effect originates,
allowing all vehicles to pass without collisions and respecting
the sub-optimal order. The algorithm can be configured to



allow cars scheduled consecutively to cross the intersection
simultaneously if their trajectories are not colliding (e.g.,
both vehicles turn right), thus leading to the definition of two
different approaches: single and coupled. For the first one,
we suppose to ignore the trajectory of the vehicles and ensure
safety by allowing the passage of only one of them at a time
through the merge zone. In the second version, the driver’s
intentions are assumed known, resulting in the possibility of
simultaneous passages and a performance improvement in
terms of total time needed to empty the intersection.
We also imposed with (5) that all cars must keep a certain
distance dsafe from the one ahead of them in the same lane to
avoid rear-end collisions. The remaining constraints consist
of the system dynamics, the update of the initial conditions,
speed and acceleration constraints (without slack variables)
and the positivity of the slack variables.

Remark 2: In our approach, we did not consider the
crossing time as the variable to be minimized, thus making
it sub-optimal, allowing us to keep the problem solvable via
QP. This is essential in all those applications where real-time
computation of the solution is crucial to guarantee safety.

IV. V2X COMMUNICATION SCENARIO

The vehicles and the control infrastructure communicate
via independent full duplex channels. It is assumed that
transmissions happen exactly at the beginning of each time
step, and no propagation nor processing delays are taken into
consideration.

The packet loss phenomena are modeled on each channel
i by a Bernoullian process with a distance-dependent loss
probability prloss(di(k)), where di(k) indicates the distance
of i-th car from the control infrastructure at time k. As the
car comes closer to the controller, the probability decreases
following the real-world measurements derived from Fig. 9
in [18], where authors reported the packet delivery rate
(PDR) for 5G V2X application. Bernoulli’s model is justified
because the sampling period considered allows us to assume
that the packet loss probability at each step is independent
of previous ones. In our case, packet loss is only intended
on the receiver’s end when signal corruption occurs due to
interference and disturbances. This phenomenon implies a
classification among vehicles as visible or invisible. The first
ones manage to communicate correctly with the central unit
from the moment they enter the control zone and are the
ones we refer to as active, while the latter, failing to send
the first packet, remain undetected until their first correct
transmission, hence, they cannot be controlled up to that
moment.

The loss of information due to packet corruption is man-
aged by exploiting the inherent property of the implemented
model predictive control. By computing the control inputs for
the active cars over a future horizon, we can provide them
with enough information to cope with future non-idealities,
like packet losses. Hence, we distinguish three different types
of messages used in the system:

• the packet of metadata that vehicles send to the con-
troller as first communication;

• the packet of data containing the current state of a
vehicle, sent to the controller at each time step until
the exiting;

• the packet of control inputs sent by the controller to the
active cars.

The latter can have a variable length lenm depending on
how much of the computed horizon we want to send to the
cars. By setting lenm = h, h ≤ N , then the message sent
by the control unit to car i at time k will contain the input
um,k,i=[uk,i uk+1,i . . . uk+h−1,i]

′.
The mechanism that regulates the application of the correct

control input for vehicle i input at time k is managed
by an internal counter ∆k,i, which considers the number
of consecutively discarded packets by the car, and it is
recursively defined by the following formula:

∆k,i = (1− δk,i)(∆k−1,i + 1). (13)

where δk,i is the stochastic variable which models the single
loss event:

δk,i=

{
1 if there is no packet loss on ith channel at time k

0 otherwise.
(14)

At time k, the counter is reset to zero if the packet is received
correctly (δk,i = 1) or incremented, if not. When the number
of consecutive losses overcomes the length of the horizon
that has been sent, the cars keep applying the last control
input component, in a HOLD fashion, until they correctly
receive a new message from the central unit.

V. SIMULATION RESULTS

We conducted several Monte Carlo simulations on the
system to prove its safety and evaluate its performance. All
tests were run on Matlab 2024a with the support of the
Automated Driving Toolbox for 2D visualisation. For the
solution of the optimisation problem, we used the Yalmip
framework [19] with Gurobi [20] as quadratic solver. This
setup on a centralised workstation ensures control over a
reasonable number of cars at a single intersection within
the considered sampling period. The chosen values for the
simulation parameters are reported in Table 1, in SI unit
measurements.

The considered scenario in all trials is the one illustrated
in Fig. 1, designed in the Automated Driving Toolbox;
the spawning events are regulated by a Poisson process
of parameter λpoiss, with the assumption that they happen
exactly at the beginning of the designated time step. The
value of λpoiss, indicating the average rate of spawning, is
referred to the sampling time. In each simulation, we tested
a number M of vehicles of the same type (regular car of
dimensions: lencar, widcar); for all cars the initial speed is
randomly selected in the range [v0,min, v0,max]. For each
sample i, all the associated random values (initial speeds,
coming lanes, arrival lanes and spawning time steps) are
generated before the simulations by setting the integer seed
of the random generator functions equal to i.
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Fig. 2. Percentages of simulations with a detected collision for different
lengths of the control input sent to the vehicles.

For the first experiment, we evaluated the robustness of the
control algorithm by considering real-world measurements
for the loss probability by retrieving the values from plots
of Fig. 9 in [18], where they tested 5G NR V2X mode
2 technology for various traffic scenarios. In our test, we
refer to the data obtained for aperiodic traffic in the case
of 25 veh/km, in accordance with the spawning process
described at the beginning of this section. Tests were done
over nsamples = 10000 samples by classifying a simulation
as failed when at least one collision occurred due to commu-
nication issues. In Fig. 2, we show the test results conducted
for different lengths of the prediction horizon, finding that
from an initial value of 1.84%, the failure percentage settles
at 1.64%. This implies that the control system ensured
safety in about 98.1% of the times (for the worst case)
and that a limit can be found to the robustness achievable
by increasing the number of future control inputs sent to
the cars. Moreover, it opens a new experimental scenario
related to the influence of the intersection structural features
(e.g., control zone dimensions, maximum speed value vmax,
etc.) on the failure percentage. Future work will concern the
impact of these parameters’ variations on the system with
the number of future control inputs sent to the vehicles set
to the best trade-off found here.

In the second test, we studied a trade-off between the
maximal packet loss probability that the system can bear
before collisions become unavoidable and the length of the
prediction horizon that the control infrastructure can send to
the vehicles. By sending longer messages, cars have more
information to cope with future packet loss events, but if
consecutive losses continue occurring for enough time due to
bad channel conditions, then the control cannot ensure safety
anymore. Hence, the scope of the experiment is to understand
how low probability can be in this scenario, considering both
the robustness of the controller and that a larger message
dimension implies the introduction of larger delays over
transmissions. In this case, we characterized the Bernoullian
model with a constant loss probability, independent from dis-
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Fig. 3. Maximal packet loss probability that the system can tolerate before a
collision occurs for different lengths of the control input sent to the vehicles.

tances. Tests were conducted over nsamples = 1000 samples,
first estimating a critical failure probability prcrit by means
of a bisection method and then refining the value by testing
all the probabilities in the range 0 : 0.1 : prcrit. As shown
in Fig. 3, simulation data indicate the correlation between
the two metrics, with the maximal loss probability accepted
by the system that grows as the horizon length increases. In
particular, for message length from one to two, we have a
relevant 30% improvement in loss probability, while going
from length two to five, there is a less steep increase, with
the highest achievement at the largest dimension considered,
of a 17%. Hence, we claim that two is the best trade-
off in this case, meaning that the controller sends input
um,k,i = [uk,i uk+1,i]

′ to active car i at time k, to achieve
the highest loss probability sustainable while occupying the
channel for the least time possible.

In the last test, we investigated the difference in perfor-
mance between the two developed scheduling approaches:
single and coupled. Specifically, we confronted the two
algorithms’ total crossing times, i.e., the time steps required
to make all cars exit the intersection. The concept behind it
is that in the coupled case, pairs of vehicles can cross the
intersection together if their trajectories are not colliding,
leading to a faster emptying of the merge zone since cars
do not always have to wait for the passage of all the ones
scheduled before, as in the single case. The experiment was
conducted over nsamples = 100 samples in ideal communi-
cation conditions by setting the packet loss probability for
each channel to zero for simplicity. We discovered that there
is an enhancement in system performance passing from the
single version to the coupled one, of about 1%, which is
not much (0.4s less per car, on average), but it’s acceptable
by considering that the coupled algorithm is derived from
the single one, hence it is not natively designed to prefer
the passage of paired cars, like the one developed in [6],
for example. Though having proved that a greater amount
of information leads to better performance, in this case, the
single algorithm is preferred due to its relative simplicity.



TABLE I
SIMULATION PARAMETERS

Parameters Value

Control zone side L 300 m
Merge zone side l 20 m
Number of vehicles M 10
Poisson spawning process constant λpoiss 0.1
Vehicle length lencar 4.7 m
Vehicle width widcar 1.8 m
Minimum initial speed v0,min 8.3 m/s
Maximum initial speed v0,max 12.3 m/s
Maximum speed vmax 17 m/s
Maximum acceleration amax 6 m/s2
Sampling period τs 0.1 s

VI. CONCLUSIONS

In this work, we presented a centralised control archi-
tecture to manage the crossing of an urban intersection
by autonomous vehicles. The control algorithm consisted
of a scheduler and an MPC to obtain a sub-optimal min-
imisation of the time required by the cars to empty the
intersection while keeping the problem quadratic and hence
solvable in real-time, which is strictly necessary for this
kind of applications. We considered the case of packet
loss over communication channels by modeling the process
with Bernoullian variables and considering both a position-
dependent probability and the relation between acceptable
loss probability and message length. Finally, we proved the
safeness of the algorithm by Monte Carlo simulations.

Future work will focus on testing the algorithm on
larger distances to study the impact of the intersection
structure on collision avoidance and the implementation
of an analytical formula for the derivation of packet loss
probability and more complex models as Markov chains
to deal with burst losses. It is also planned to set up a
real implementation of this scenario, with real cars and
a V2X communication system, in collaboration with the
partners of the MoVeOver/SCHEDULE project indicated in
the acknowledgments. Sensitivity analysis on key parameters
will be considered as well to understand how variations in
the controller tunings affect performance. Also, given the
complexity of the problem, more advanced models can be
considered to take into account more elaborate scenarios.
This can be achieved through machine learning algorithms,
such as regression trees, random forests, and neural networks,
combined with control algorithms, building on methods
developed in [21], [22], while also incorporating stochastic
elements [23] and ensuring stability guarantees [24].
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