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Abstract— In this work we present necessary and sufficient
conditions for mean square stability (MSS) of discrete-time
time-inhomogeneous Markov jump linear systems (MJLS) af-
fected by polytopic uncertainties on transition probabilities. We
also prove that deciding MSS on such systems is NP-hard and
that MSS is equivalent to exponential mean square stability
(EMSS) and to stochastic stability (SS).

I. INTRODUCTION

Wireless control networks (WCN) are distributed control
systems where the communication between sensors, actu-
ators, and computational units is supported by a wireless
communication network. The use of WCN in industrial
automation results in flexible architectures and generally
reduces installation, debugging, diagnostic and maintenance
costs with respect to wired networks (see e.g. [1], [2]
and references therein). However modeling, analysis and
design of (wireless) networked control systems (NCSs) are
challenging open research problems since they require to
take into account the joint dynamics of physical systems,
communication protocols and network infrastructures. Re-
cently, a huge effort has been made in scientific research
on NCSs, see e.g. [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14] and references therein for a general
overview. In this domain it has been shown (e.g. in [14], [15],
[16], [17]) that discrete-time Markov-jump linear systems
(MJLS, [18]) represent a promising mathematical model to
jointly take into account the dynamics of a physical plant
and non-idealities of wireless communication such as packet
losses. A MJLS is, basically, a switching linear system
where the switching signal is a Markov chain. The transition
probability matrix (TPM) of the Markov chain can be used
to model the stochastic process that rules packet losses due
to wireless communication. However, in most real cases,
such probabilities cannot be computed exactly and are time-
varying. We can take into account this aspect by assuming
that the Markov chain of a MJLS is time-inhomogeneous,
i.e. a Markov chain having its TPM varying over time,
with variations that are arbitrary within a polytopic set of
stochastic matrices. Given such mathematical model, the
first problem to be addressed is the (mean square) stability
problem. Some recent work addressed the above problem:
in [19] a sufficient condition for stochastic stability in terms

Y. Zacchia Lun is with the Gran Sasso Science Institute (GSSI), L’Aquila,
Italy. A. D’Innocenzo and M. D. Di Benedetto are with the Center of
Excellence DEWS and with the Department of Information Engineering,
Computer Science and Mathematics of the University of L’Aquila, Italy.

The research leading to these results has received funding from the Italian
Government under CIPE resolution n.135 (Dec. 21, 2012), project INnovat-
ing City Planning through Information and Communication Technologies
(INCIPICT).

of linear matrix inequality feasibility problem is provided,
while in [20] a sufficient condition for mean square stability
(MSS) of system with interval transition probability matrix,
which in turn can be represented as a convex polytope [21],
is presented in relation to spectral radius; in general, only
sufficient stability conditions have been derived for MJLS
with time-inhomogeneous Markov chains having TPM arbi-
trarily varying within a polytopic set of stochastic matrices.
As the main contribution of this paper, we provide necessary
and sufficient conditions for MSS of discrete-time MJLS
with time-inhomogeneous Markov chains. Such conditions
require to decide whether the joint spectral radius (JSR) of
a finite family of matrices is smaller than 1. While it is
well known that the stability analysis problem for general
switching systems (i.e. deciding whether the JSR is smaller
than 1) is NP-hard [22], we prove that it is NP-hard even for
the matrices structure deriving from our particular model. We
also prove that MSS is equivalent to exponential mean square
stability and to stochastic stability, and present an illustrative
example showing that having the spectral radius smaller than
one for each matrix Λ associated to the second moment of
the state vector x(k) is not enough to ensure the stability of
the time-inhomogeneous system, and that perturbations on
values of TPM can make a stable system unstable.

The notation used throughout is standard. The sets of
all positive and nonnegative integers are represented by N
and N0, respectively. The n-dimensional complex Euclidean
space is indicated by Cn, while a set of linear maps between
two complex Euclidean spaces Cm and Cn is denoted by
Cm×n and is encoded through a set of m× n complex ma-
trices. The conjugate of a complex matrix M is denoted by
M̄ , while the superscript * indicates the conjugate transpose
of a matrix, and T indicates the transpose. Clearly for a
set of real matrices, denoted by Rm×n, * and T have the
same meaning. We indicate with Cn×n∗ the set of Hermitian
matrices, and with Cn×n+ the set of positive semi-definite
matrices. The n×n identity matrix is denoted by In. Unless
otherwise stated, ‖·‖ will indicate the standard norm in Cn,
and, for M ∈ Cm×n, ‖M‖ will denote the induced uniform
norm in Cm×n. The linear space made up of all N sequences
of complex matrices K = [K1, ...,KN ], with Ki ∈ Cm×n,
i ∈ N, is indicated by Hm,n. Finally, E[·] stands for the
mathematical expectation of the underlying scalar valued
random variables.

II. DISCRETE-TIME TIME-INHOMOGENEOUS
MARKOV JUMP LINEAR SYSTEMS

Let us consider a probability space (Ω,F , P r), where Ω
is the sample space, F is the σ-algebra of events and Pr is
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the probability measure. Let θ : N0 × Ω→ N be a Markov
chain defined on the probability space, which takes values in
a finite set N , {1, . . . , N}. For every k ∈ N0 let us define
the transition probability as

pij(k) = Pr{θ(k + 1) = j | θ(k) = i} ≥ 0,

N∑
j=1

pij(k) = 1.

(1)
The associated TPM P (k) is a stochastic N×N matrix with
entries pij(k). In this work we assume that P (k) is unknown
and time-varying within a bounded set.

Assumption 1: TPM P (k) is polytopic, i.e. ∀k ∈ N0

P (k) =

L∑
l=1

λl(k)Pl, λl(k) ≥ 0,

L∑
l=1

λl(k) = 1, (2)

where {Pl}l∈L,{1,...,L} , PL is a given set of TPMs, which
are the vertices of a convex polytope.

Remark 1: This assumption is not restrictive, since the
polytopic uncertainty model is widely used for robust control
of time-homogeneous MJLS (see e.g. [23]) and is considered
to be more general than the partly known element model of
TPM uncertainties; furthermore, also the interval TPM can
be represented as a convex polytope [21].

The related noiseless autonomous discrete-time time-
inhomogeneous MJLS (S) is described by{

x(k + 1) = Aθ(k)x(k),

x(0) = x0, θ(0) = θ0

(3)

where x(k) ∈ Cn is the state vector, Aθ(k) ∈ Cn×n is
the state matrix associated with the operational mode of the
system, x(0) and θ(0) are initial conditions.

Remark 2: When studying MJLS, it is a standard practice
to work with complex fields [18], but one can also work with
real-valued ones, by considering complex matrices acting on
Cn×n as real operators acting on R2n×2n [24].

The set N comprises the operational modes of the system
(S) and for each possible value of θ(k) = i, i ∈ N , we
denote the state matrix associated with the i-th mode by
Ai = A{θ(k)=i}. Thus, A = [A1, ..., AN ] ∈ Hn,n.

For a set Θ ∈ F , let us define the indicator function 1Θ

in the usual way [18, p. 31], that is, ∀ω ∈ Ω,

1Θ(ω) =

{
1 if ω ∈ Θ,

0 otherwise.
(4a)

Notice that, ∀i ∈ N,

1{θ(k)=i}(ω) = 1 if θ(k)(ω) = i, and 0 otherwise. (4b)

Thus, we have that

E[x(k)] =

N∑
i=1

E[x(k)1{θ(k)=i}],

E[x(k)x∗(k)] =

N∑
i=1

E[x(k)x∗(k)1{θ(k)=i}].

Following the standard workflow for MJLS [18, p. 31],
for k ∈ N0, let us use the following notation:

Q(k) , [Q1(k), . . . , QN (k)] ∈ Hn+, (5a)

Qi(k) , E[x(k)x∗(k)1{θ(k)=i}] ∈ Cn×n+ , (5b)

q(k) , [q1(k), . . . , qN (k)]T ∈ CNn, (5c)

qi(k) , E[x(k)1{θ(k)=i}] ∈ Cn, (5d)

where Hn+ , {K ∈ Hn∗; Ki ∈ Cn×n+ , i ∈ N}, and
Hn∗ , {K = [K1, . . . ,KN ] ∈ Hn,n; Ki ∈ Cn×n∗ , i ∈ N}.

This permits us to define the expected value of x(k) as

µ(k) , E[x(k)] =

N∑
i=1

qi(k) ∈ Cn, (6)

and the second moment of x(k) as

Q(k) , E[x(k)x∗(k)] =

N∑
i=1

Qi(k) ∈ Cn×n+ . (7)

Now, we are ready to recall the definition of the mean
square stability [18, pp. 36–37].

Definition 1 (Mean square stability): We say that MJLS
(S) is mean square stable (MSS), if for every initial state
x0 ∈ Cn and for every initial probability distribution of θ(0)

lim
k→∞

µ(k) = 0 and lim
k→∞

Q(k) = 0. (8)

We can easily see that the recursive equations for qi(k)
and Qi(k) in the time-inhomogeneous case have the same
structure as the time-homogeneous case with known prob-
ability matrix [18, p. 32], and the extension to this more
general case is done in the following manner:

Proposition 1: Consider the system S. ∀k ∈ N0, j ∈ N
1) qj(k + 1) =

∑N
i=1 pij(k)Aiqi(k)

2) Qj(k + 1) =
∑N
i=1 pij(k)AiQi(k)A∗i

Proof: Regarding the first statement, we have that

qj(k + 1) = E[Aθ(k)x(k)1{θ(k+1)=j}]

=

N∑
i=1

E[Aix(k)1{θ(k)=i}1{θ(k+1)=j}]

=

N∑
i=1

AiE[x(k)1{θ(k)=i}Pr{θ(k + 1) = j | θ(k) = i}]

=

N∑
i=1

Aiqi(k)pij(k),

which proves the first result. Similarly, for the next statement:

Qj(k + 1) =

N∑
i=1

E[Aix(k)(Aix(k))∗1{θ(k)=i}1{θ(k+1)=j}]

=

N∑
i=1

AiQi(k)A∗i pij(k).

Another useful result regards the inequality between
‖q(k)‖ and ‖Q(k)‖1:

Proposition 2: Consider the system S. ∀k ∈ N0

‖q(k)‖2 ≤ n‖Q(k)‖1 (9)
Proof: See [18, p. 35, the proof of Proposition 3.6].

For K = [K1, . . . ,KN ] ∈ Hm,n, let us denote the
vectorization transformation ϕ(Ki) , vec(Ki), i ∈ N [25].

5528



Indicating by (Ki)·j the j-th column of Ki, we have

vec(Ki) ,

(Ki)·1
...

(Ki)·n

 ∈ Cnm, ϕ̂(K) ,

ϕ(K1)
...

ϕ(KN )

 ∈ CNnm

(10)
The spaces Hm,n and CNnm are uniformly homeomorphic
[26, p. 117] through the linear mapping ϕ̂(·) [18, p. 17].

Let us indicate by ⊗ a Kronecker product defined in
the usual way [27]. For any X,Y, Z,M given matrices of
appropriate size, the following properties are satisfied:

(X+Y )⊗(Z+M) = X⊗Z+Y⊗Z+X⊗M+Y⊗M (11a)

ϕ(XY Z) = (ZT ⊗X)ϕ(Y ) (11b)

As for time-homogeneous case [18, pp. 33-35], also here,
via application of (5b), Proposition 1, (10) and (11) to (5a),
we have that

ϕ̂(Q(k + 1)) = Λ(k)ϕ̂(Q(k)), (12)

where Λ(k) ∈ CNn2×Nn2

is a matrix associated to the
second moment of x(t), defined in the following way:

Λ(k) , (PT (k)⊗ In2)diag[Āi ⊗Ai], (13)

in which we use the block diagonal matrix diag[Āi⊗Ai] ,
Ā1 ⊗A1 0 · · · 0

0 Ā2 ⊗A2 · · · 0
...

...
. . .

...
0 0 · · · ĀN ⊗AN

 (14)

Proposition 3: The matrix Λ(k) is polytopic, i.e. ∀k ∈ N0

Λ(k) =

L∑
l=1

λl(k)Λl, λl(k) ≥ 0,

L∑
l=1

λl(k) = 1, (15a)

Λl , (PTl ⊗ In2)diag[Āi ⊗Ai], Pl ∈ PL. (15b)

Proof: Direct application of (2) and (11a) to (13).
Let AL be the set {Λl}l∈L of all vertices of the polytope

associated to the second moment of x(k).
Remark 3: Recalling the definition of the convex hull [28,

p. 14], we can write that ∀k ∈ N0, Λ(k) ∈ convAL.
From (12) we have that

ϕ̂(Q(k)) = Λ(k − 1)Λ(k − 2) · · ·Λ(0)ϕ̂(Q(0)). (16)

It is well known, that the maximal rate of growth among
all products of matrices from a finite set M is given by the
joint spectral radius ofM, ρ̂(M), which is the generalization
of spectral radius to sets of matrices.

III. JOINT SPECTRAL RADIUS

The notion of joint spectral radius (JSR) was introduced
by Rota and Strang [29] and in the last decades it has been
the subject of intense research due to its role in the study
of wavelets, switching systems, approximation algorithms,
curve design, and many other topics [24], [30]. In this section
we present some results useful for our discussion.

Let M be a family of complex square matrices, that is
M = {Ml}l∈L, where Ml ∈ Cn×n. For each k ∈ N,

consider the set Πk(M) be a set of all possible products
of length k whose factors are elements of M, i.e.

Πk(M) = {MlkMlk−1
· · ·Ml1 | l1, . . . , lk ∈ L}. (17)

Definition 2 (Joint spectral radius): For any matrix norm
‖·‖ on Cn×n, consider the supremum among the normalized
norms of all products in Πk(M), i.e.

ρ̂k(M) , sup
Π∈Πk(M)

‖Π‖
1/k , k ∈ N. (18)

The joint spectral radius of M is defined as

ρ̂(M) = lim
k→∞

ρ̂k(M). (19)

The JSR of a bounded set of matrices has some interesting
properties reported below.

Proposition 4 (Convex hull): The convex hull of a set has
the same joint spectral radius as the original set, i.e.

ρ̂(convM) = ρ̂(M). (20)
Proof: This result was first obtained by Barabanov [31].

See [32], [30] for further details.
Proposition 5 (Convergence of matrix products): For any

bounded set of matrices M and for any k ∈ N, all matrix
products Π ∈ Πk(M) converge to zero matrix as k → ∞,
if and only if ρ̂(M) < 1.

Proof: See the seminal work of Berger and Whang [33,
Theorem I (b)].

These concepts are at the basis of our main results.

IV. MAIN RESULTS
Theorem 1: The discrete-time Markov jump linear system

(S) with unknown and time-varying TPM P (k) ∈ convPL
is mean square stable if and only if ρ̂(AL) < 1.

Proof: (Necessity: MSS⇒ ρ̂(AL) < 1) By hypothesis,

∀Q(0) = E[x0x
∗
0], lim

k→∞
Q(k) = 0.

From (7), we have that

lim
k→∞

N∑
i=1

Qi(k) = 0, Qi(k) ∈ Cn×n+ .

Thus, from (5a) follows that

lim
k→∞

Q(k) = 0. (21)

The mapping ϕ̂(·) is uniform homeomorphic, so also

lim
k→∞

ϕ̂(Q(k)) = 0.

Applying (16), we obtain

lim
k→∞

Λ(k − 1)Λ(k − 2) · · ·Λ(0)ϕ̂(Q(0)) = 0.

From Proposition 5 and Remark 3, this last statement is
true for every Q(0) if and only if ρ̂(convAL) < 1. From
Proposition 4 follows the thesis.

Now, let us prove the sufficiency (MSS ⇐ ρ̂(AL) < 1).
The first part of the proof follows the inverse pattern of the
proof of the necessity:

ρ̂(AL) < 1⇒ lim
k→∞

Q(k) = 0, ∀Q(0) = E[x0x
∗
0]
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by Propositions 4-5, Remark 3, (16), uniform homeomor-
phism between spaces Hm,n and CNnm through the mapping
ϕ̂(·), (5a) and (7).

To complete the proof, we need to show that

ρ̂(AL) < 1⇒ lim
k→∞

µ(k) = 0, ∀µ(0) = E[x0].

We already have (21) from the first part of the proof.
Together with (9) from Proposition 2, this implies that

lim
k→∞

‖q(k)‖ = lim
k→∞

N∑
i=1

‖qi(k)‖ = 0.

This implies the thesis and concludes the proof.
While it is well known that the stability analysis problem

for general switching systems (i.e. deciding whether the JSR
is smaller than 1) is NP-hard [22], we prove that it is NP-hard
even for our particular model.

Theorem 2: Given a discrete-time Markov jump linear
system (S) with unknown and time-varying transition prob-
ability matrix P (k) ∈ convPL, unless P = NP , there is no
polynomial-time algorithm that decides whether it is MSS.

Proof: Our proof works by reduction from the matrix
semigroup stability, which is well known to be NP-hard [24,
Theorem 2.4 and Theorem 2.6]. In this problem, one is given
a set of two matricesM = {M,M ′} ⊂ Qr×r+ (Q+ is the set
of nonnegative rational numbers), with M = [mij ] and M ′ =
[m′ij ], and one is asked whether the product of any sequence
of matrices M,M ′ of length k converges to the zero matrix
when k → ∞. Let us consider a particular instance M =
{M,M ′} ⊂ Qr×r+ of the matrix semigroup stability problem:
we will build a discrete-time MJLS S with set of (scalar)
state matrices {a1, . . . , aN} ⊂ R+, N = r + 1, (R+ is the
set of nonnegative real numbers), with unknown and time-
varying TPMs P (k) ∈ convPL,PL = {P, P ′} ⊂ RN×N+ ,
where P = [pij ] and P ′ = [p′ij ] are stochastic matrices, and
prove that (S) is MSS if and only if the set M is stable.

By (15b) it follows that

A = PT diag[a2
i ], A′ = (P ′)T diag[a2

i ], i ∈ N .
Our construction is as follows.

Assign arbitrarily for j = 1, . . . , r

a2
j ∈ Q+, a

2
j ≥ rmax{m1j , . . . ,mrj ,m

′
1j , . . . ,m

′
rj}.

Assign for i, j = 1, . . . , r

pij ,
mji

a2
i

∈ [0,
1

r
], p′ij ,

m′ji
a2
i

∈ [0,
1

r
].

Assign for i = 1, . . . , N

piN , 1−
r∑
j=1

pij ∈ [0, 1], p′iN , 1−
r∑
j=1

p′ij ∈ [0, 1].

Assign aN , 0 and pNj = p′Nj , 1
N for j = 1, . . . , N .

As a consequence of the above assignments, it follows that
P, P ′ are stochastic matrices and that

A =

[
M 0
R 0

]
, A′ =

[
M ′ 0
R′ 0

]
,

with R,R′ ∈ Qr+. By Theorem 1 S is MSS if and only
if the JSR of {A,A′} is smaller than 1. From this, it is

straightforward to see that S is MSS if and only if M is
stable. This concludes the proof.

Remark 4: It is not known (to the best of our knowledge)
whether the matrix semigroup stability problem is Turing
decidable (say, for matrices with rational entries). Thus, the
above proof does not allow us to conclude that MSS is
undecidable for MJLS with polytopic unknown and time-
varying transition probability matrices. This is why we only
claim that the stability problem is NP-hard.

The next theorem links MSS to EMSS and to SS.
Theorem 3 (Stability equivalence): The following asser-

tions are equivalent.
(a) The system (S) is mean square stable (MSS).
(b) The system (S) is exponentially mean square stable

(EMSS), i.e. for some β ≥ 1, 0 < ζ < 1, we have
for all initial states x0 ∈ Cn and all initial probability
distributions of θ(0),

E[‖x(k)‖2] ≤ βζk‖x0‖22, k ∈ N0. (22)

(c) The system (S) is stochastically stable (SS), i.e. for all
x0 ∈ Cn and all initial probability distributions of θ(0),

∞∑
k=0

E[‖x(k)‖2] <∞. (23)

Proof: It is trivially verified that [(b)⇒ (c)]. Thus, let
us show that [(c)⇒ (a)]. First, let us note that

E[‖x(k)‖2] = E[tr(x(k)x∗(k))] = tr(Q(k)) ≥ 0, (24)

where tr(·) denotes the trace operator. Therefore, from (23)
lim
k→∞

tr(Q(k)) = 0.

Accordingly, as stated in [18, p. 44, within the proof of
Proposition 3.24], this implies that

lim
k→∞

Q(k) = 0, ∀x0, ∀θ0.

We have already seen in the proof of the sufficiency of
Theorem 1 that this implies MSS of the system (S). Hence,
this part of the proof is concluded.

Moreover, as a result we have also that [(b)⇒ (a)].
Now, let us show that [(a) ⇒ (b)]. From Theorem 1 we

know that if the system (S) is MSS, then ρ̂(AL) < 1. Since

lim
k→∞

‖Λ(k) · · ·Λ(0)‖ 1
k = ρ̂(AL),

by the radical test for infinite series, we can state that
‖Λ(k − 1) · · ·Λ(0)‖ < ζk, ∀k ≥ k′, ∀ζ ∈ (ρ̂(AL), 1),

for some integer k′ ≥ 0. With
β′ = ζ−k

′
sup

Π∈Πj [AL], 0≤j≤k′
‖Π‖, β′ ≥ 1,

we obtain that

‖Λ(k − 1) · · ·Λ(0)‖ ≤ β′ζk, ∀k ∈ N0. (25)

Now, from (24), we have that

E[‖x(k)‖2] =

N∑
i=1

tr(E[x(k)x∗(k)1{θ(k)=i}])

=

N∑
i=1

tr(Qi(k)) ≤ n
N∑
i=1

‖Qi(k)‖.

Since we are working on a finite-dimensional linear space,
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any two norms are equivalent [34, Theorem 4.27], and we
can make use of Frobenius norm defined for M ∈ Cm,n as

‖Mi‖F ,
√

tr(M∗iMi) = ‖vec(Mi)‖F = ‖ϕ(Mi)‖F (26)

to obtain ‖Qi(k)‖F ≤ ‖Λ(k − 1) · · ·Λ(0)‖F ‖ϕ̂(Q(0))‖F ,
which holds ∀i ∈ N . Considering that for Frobenius norm
‖ϕ̂(Q(0))‖F = ‖Q(0)‖1, we have that

E[‖x(k)‖2] ≤ nN ‖Λ(k − 1) · · ·Λ(0)‖F ‖Q(0)‖1.

Since (25) holds for any equivalent norm, and having

‖Q(0)‖1 =

N∑
i=1

‖Qi(0)‖ ≤
N∑
i=1

E[‖x0‖21{θ(0)=i}] = ‖x0‖22,

we can finally write

E[‖x(k)‖2] ≤ nNβ′ζk‖x0‖22 = βζk‖x0‖22. (27)

Thus, we have proved that [(a) ⇒ (b)]. All the remaining
implications follow from the already proved ones. This
concludes the proof.

V. ILLUSTRATIVE EXAMPLE

In order to show that having the spectral radius smaller
than one for each matrix Λ associated to the second moment
of x(k) is not enough to ensure the (mean square) stability
of the time-inhomogeneous system, let us consider the MJLS
S with N = 3 operational modes, where the state matrices
associated with the operational modes are

A1 =

[
1 0
0 1.2

]
, A2 =

[
1.13 0
0.16 0.48

]
, A3 =

[
0.3 0.13
0.16 1.14

]
and the time-varying probability matrix P (k) is uncertain
and belongs to a polytope with L = 2 vertices

P1 =

 0 0.35 0.65
0.6 0.4 0
0.4 0.6 0

 , P2 =

0.25 0.75 0
0 0.6 0.4
0 0.4 0.6

 .
Any probability matrix within a polytope is represented by

P (k) = λ(k)P1 + (1− λ(k))P2, 0 ≤ λ(k) ≤ 1.

Let us consider, for instance, also the matrix

P ′ = 0.5 P1 + 0.5 P2.

The spectral radii ρ of the matrices Λ are:

ρ(Λ1) = 0.901601, ρ(Λ2) = 0.905686, ρ(Λ′) = 0.937965.

Thus, the time-homogeneous MJLS with TPM P1, P2 and
P ′ are mean square stable [18].

However, the time-inhomogeneous system having this
TPMs is not (mean square) stable, because the joint spectral
radius, calculated with the JSR toolbox [35], is

ρ̂(AL) = [ρ̂min(AL), ρ̂max(AL)] = [1.024442, 1.031096]

This shows us that perturbations on transition probability
matrix P can make a stable MJLS system unstable.

In order to present this result visually, we report one pos-
sible dynamical behavior of the system. For x0 = [100; 85]
and the initial probability distribution p0 = [0.33, 0.34, 0.33],
we have obtained the following system trajectories.

Fig. 1. One of the possible trajectories of x(k) when TPM is P1

Fig. 2. One of the possible trajectories of x(k) when TPM is P2

Fig. 3. Trajectory of x(k) when TPM is switching between P1 and P2
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Figure 1 shows us a trajectory of the system state vector
having only the time-homogeneous transition probability
matrix P1, while Figure 2 presents a system trajectory when
TPM used is always P2. Finally, Figure 3 reveals a trajectory
of the system state vector when the transition probability
matrix is time-inhomogeneous and is switching between P1

and P2, evincing instability of the system.

VI. CONCLUSIONS

The discrete-time time-inhomogeneous Markov jump lin-
ear systems with polytopic uncertainties on transition proba-
bilities present a promising mathematical model to jointly
take into account the dynamics of a physical plant and
non-idealities of wireless communication such as packet
losses. It is well suited for modeling of the control systems
operating on the fading communication channels, which have
probabilistic and time-varying behavior. We plan to apply
this model to such scenarios, in order to study first the
cases with bounded disturbances, and then the problems of
linear quadratic regulation, H∞ control, fault and intrusion
detection among others.
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