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Abstract—This note studies state estimation in wireless
networked control systems with secrecy against eavesdropping.
Specifically, a sensor transmits a system state information to the
estimator over a legitimate user link, and an eavesdropper over-
hears these data over its link independent of the user link. Each
connection may be affected by packet losses and is modeled by
a finite-state Markov channel (FSMC), an abstraction widely
used to design wireless communication systems. This paper
presents a novel concept of optimal mean square expected
secrecy over FSMCs and delineates the design of a secrecy
parameter requiring the user mean square estimation error
(MSE) to be bounded and eavesdropper MSE unbounded. We
illustrate the developed results on an example of an inverted
pendulum on a cart whose parameters are estimated remotely
over a wireless link exposed to an eavesdropper.

Index Terms—Wireless networked control systems, finite-
state Markov channel, optimal mean square expected secrecy

I. INTRODUCTION

Wireless networked control systems (WNCSs) comprise
spatially distributed networked sensors, actuators, and con-
trollers providing closed-loop control over wireless commu-
nication media. These systems find applications in industrial
automation, intelligent transportation, and smart grids, re-
ceiving considerable attention from industry and academia
[1], [2]. The significant challenges of wireless connectivity,
especially for the control applications, lie in the time-
varying, unreliable and shared nature of this communica-
tion medium. The movement of people and objects in the
propagation environment induces the shadow and small-scale
fading that, paired with interference from other transmitters,
causes information loss leading to performance and stability
degradation [3]. Furthermore, due to the shared nature of the
wireless medium, other agents in the vicinity can overhear
the content of transmissions, and there is often a need to
protect systems from eavesdroppers [4], [5].

The current defense mechanisms against eavesdropping in
WNCSs involve encryption-based tools, wireless physical-
layer security methods, and control-theoretic approaches
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[6]–[9]. Like [10], this paper relies on control theory to
take advantage of the system dynamics to provide security
guarantees by randomly withholding sensor information.
However, unlike any other control-theoretic contribution, it
does not consider the transmission over wireless links being
modeled by an independent and identically distributed (i.i.d.)
Bernoulli random variable or a time-homogeneous two-state
Markov chain (MC) but by a finite-state Markov channel
(FSMC). FSMC is an important model because traditionally,
wireless communication systems designers use this math-
ematical abstraction for modeling error bursts in fading
channels to analyze and improve performance measures
in the physical or media access control layers. Moreover,
several receivers’ channel state estimation and decoding
algorithms rely upon FSMC models [11].

In this work each agent (user or eavesdropper) esti-
mates the process evolution of the Signal-to-Interference-
plus-Noise Ratio (SINR) on its link, independently from
the other. A finite-state MC (with more than two modes)
approximates the SINR process over each link. A binary
random variable standing for the outcome of the transmission
is associated to each Markov mode, which determines the
distribution of the binary random variable. The resulting
FSMC allows for a tighter integration in the coupled design
of the communication and estimation components of the
WNCS.

Some procedures for control and estimation over packet
dropping wireless links modeled by FSMCs can be related
to the Markov jump [12] linear systems (MJLSs) theory
[13]–[15] generalizing the fundamental results based on i.i.d.
Bernoullian assumptions [16]. Nevertheless, most of the
contributions on estimation and control over fading channels
consider the two-state MC modeling a bursty packet erasure
channel [17]. In this article, we choose a minimum mean
square Markov jump filter instead of Kalman filter (see [17]),
because the filter dynamics depends just on the current mode
of the sensing channel (rather than on the entire past history
of modes).

A. Paper contribution

This work brings the perfect expected secrecy notion in
[10] to FSMCs. In contrast to [10], we study secrecy over
estimation filters, whose gains can be pre-computed offline.
The original notion of perfect expected secrecy requires im-
plementations of the Kalman filter. However, under FSMCs,
any offline computation of the Kalman filter gains would



require a combinatorially increasing, with the time-horizon,
amount of memory. For this reason, here, we consider an
alternative practical notion of expected secrecy; we consider
the minimum MSE, but over filters with a finite number of
offline-computed gains.

In particular, in this paper, we require the eavesdropper
MSE to grow unbounded, while the user MSE remains
bounded. This new definition, requires us to adopt a different
approach and utilize tools for the stability analysis of MJLSs
[13], [18].

We employ a secrecy mechanism, which, similar to [10],
randomly withholds information with some probability. We
prove that by properly tuning the withholding probability, we
can achieve expected secrecy if an only if there is channel
disparity between the user and the eavesdropper, i.e., the
user has a higher probability of packet reception on average.
Finally, we also provide novel covariance lower bounds for
the eavesdropper MSE. Such a lower bound could be used
as a guide to tune the withholding probability of the secrecy
mechanism.

B. Notation and preliminaries

In the following, N0 denotes the set of non-negative
integers, R denotes the set of reals, while F indicates the
set of either real or complex numbers. The absolute value
of a number is denoted by | · |. For positive integers r and
s, the symbol Or denotes the vector containing all zeros of
length r. Ir indicates the identity matrix of size r, while
Or represents the matrix of zeros of size r × r. Consider a
vector x ∈ Rr and a matrix K ∈ Rr×s. The transposition is
denoted by x′ and K ′, the complex conjugation is denoted
by x and K, the conjugate transposition is denoted by x∗

and K∗, respectively. Fr×r∗ and Fr×r+ represent the sets of
Hermitian and positive semi-definite matrices, respectively.
For any positive integers N, r, a sequence of matrices Km,
m = 1, . . . , N , denoted by K = [Km]

N
m=1, we define the

following sets of sequences of Hermitian matrices and of
positive semi-definite Hermitian matrices:

HNr,∗ , {K = [Km]Nm=1;Km ∈ Fr×r∗ ,m = 1, . . . , N},
HNr,+ , {K ∈ HNr,∗;Km ∈ Fr×r+ ,m = 1, . . . , N}.

We denote by ρ(·) the spectral radius of a square matrix, i.e.,
the largest absolute value of its eigenvalues, and by ‖·‖ either
any vector norm or any matrix norm. The operator vec (·)
denotes the vectorization of a matrix. Given K = [Km]

N
m=1,

vec2 (K) = [vec (K1) , . . . , vec (KN )]
′
.

Let ⊗,
⊕

denote the Kronecker product defined in the usual
way (see for example [19]) and the direct sum, respectively.

C. Paper organization

The paper is organized as follows. The problem formulation
is presented in Section II. The optimal mean square expected
secrecy is provided by Section III and the main result is
shown in Section IV. An eavesdropper characterization is
presented in Section V. Finally, an example can be found in

Fig. 1: Remote estimation architecture.

Section VI. Proofs and technical results are reported in the
appendix.

II. PROBLEM FORMULATION

The following discrete-time linear system describes the plant{
x(k + 1) = Ax(k) + w(k),

y(k) = Lx(k) + v(k),
(1)

where x(k) ∈ Rnx is the state and y(k) ∈ Rny is the
system’s output, while k ∈ N is the (discrete) time. The
signals w(k) ∈ Rnx and v(k) ∈ Rny are the process and
measurement noise respectively: w(k) and v(k) are i.i.d.
independent Gaussian random variables with zero mean
and covariance matrices Q,R � 0 respectively. The initial
state x0 is Gaussian with zero mean and covariance matrix
Σ0 � 0.

Assumption 1. The system described by (1) is unstable, i.e.,
ρ (A) > 1.

Even without eavesdroppers, estimation of unstable open-
loop systems has been a problem of independent interest in
control systems (see [20] for instance). The ultimate goal
is to close the loop and apply control, but first, estimation
of the open-loop system should be studied. Besides, if the
system is stable, the eavesdropper can predict the state with
more accuracy, even without eavesdropping, since the state
remains close to the origin.

A. Secrecy mechanism

We adopt the secrecy mechanism introduced in [10]: the
sensor transmits the output y(k) with probability λ ∈ [0, 1]
and it transmits no information (denoted by the symbol ε)
with probability 1− λ. Formally,

ŷ(k) =

{
y(k) if ν(k) = 1

ε if ν(k) = 0
∀k ≥ 0, (2)

ν(k) is the outcome of the secrecy mechanism, represented
by a binary random variable with secrecy parameter λ de-
fined as follows: P (ν(k) = 1) = λ, P (ν(k) = 0) = 1− λ.
In the rest of this note, we will use the subscript i to indicate
an agent operating at the receiver’s end.
Formally, i ∈ {u, e}, where u refers to the user and e marks
the eavesdropper. We will also call the i-th link the wireless
link between the plant and the agent i.



B. Wireless link

Let ŷi(k) denote the measurement received by the agent i
at time k ∈ N. The general model for the agent’s link is

ŷi(k) =

{
ŷ(k) if ξi(k) = 1

ε if ξi(k) = 0
∀k ≥ 0, (3)

where ε means no information. The i-th link is modeled ex-
ploiting the mathematical abstraction provided by the finite-
state Markov channel (FSMC). The packet arrival process
on the i-th link is described by the process ξi(k), k ∈ N:
its value is ξi(k) = 0 if the packet is lost, ξi(k) = 1 if the
packet is correctly delivered. The process ξi(k) is a binary
random variable and the probability of having a packet loss
or a correct packet transmission over the link i depends on
the SINR. The SINR is determined by physical phenomena
and model parameters (see [21]) such as path loss, shadow
fading, interference and also the nature of the environment
(domestic or industrial). SINR is a stochastic process and
can be approximated by a finite state MC, denoted as ηi(k).
Let S , {1, . . . , N} be the index set of the Markov modes,
then ηi(k) ∈ {si,m}m∈S (see [21]). Each agent i estimates
the SINR process during a learning phase and thus, it knows
the number of modes, the transition probabilities, and the
probability distribution of the MC ηi. For each mode of
ηi(k), the value of ξi(k) can be either zero or one with
certain probabilities. For m ∈ S, let the variable γ̂i,m denote
the probability that ξi(k) = 1, given the mode of the MC
ηi(k) for k ∈ N,

P (ξi(k) = 1 | ηi(k) = si,m) = γ̂i,m,

P (ξi(k) = 0 | ηi(k) = si,m) = 1− γ̂i,m.

When a packet loss on the i-th link has occurred or the
secrecy mechanism has withheld the output information, the
agent i interprets the system state message as lost. Specif-
ically, based on error detection and correction mechanisms
the receiver decides whether the packet is ε and should be
dropped. For most communication protocols receiver also
performs SINR estimation for each received packet and thus
the agent i always knows the mode of the i-th link ηi(k).
From (2)-(3) the received measurement ŷi(k) is different
from ε if and only if ν(k)ξi(k) = 1. We define the variable
ϕi(k) , ν(k)ξi(k). For i ∈ {u, e}, m ∈ S,

P (ϕi(k) = 1|ηi(k) = si,m) = λγ̂i,m,

P (ϕi(k) = 0|ηi(k) = si,m) = 1− λγ̂i,m.

The information set available to the agent i at time k ∈ N
is given by Fi(k) = {(ŷi(t))kt=0 , (ϕi(t))

k
t=0 , (ηi(t))

k
t=0}.

Remark 1. Observing the information set Fi(k) and recall-
ing the definition of ŷi(k) in (3) and the secrecy mechanism
(2), it is straightforward to see that with the knowledge of
ŷi(k) and ϕi(k), the agent i is aware of y(k).

C. Probabilistic framework

Let πi,m(k) , P (ηi(k) = si,m), with 0 < πi,m(k) < 1, for
any k, for m ∈ S, i ∈ {u, e}. A Transition Probability Ma-

trix (TPM) associated with the MC ηi(k) is denoted by
Pi , [pi,mn]

N
m,n=1,

pi,mn=P (ηi(k + 1)=si,n|ηi(k)=si,m) ,

N∑
n=1

pi,mn=1.

Similarly to [18, Sec. 5.3], we make the following technical
assumptions (with i ∈ {u, e} and k ∈ N):

i) the initial conditions x0, ηi,0 are independent random
variables,

ii) the white noise sequences {w(k)} and {v(k)} are
independent of the initial conditions (x0, ν(0)) and of
the processes ξi(k), for any discrete-time k ∈ N,

iii) the MCs {ηi(k)} and the noise sequences {w(k)} and
{v(k)} are independent,

iv) the MCs {ηi(k)} are ergodic, with steady state proba-
bility distributions π∞i,m = limk→∞ πi,m(k), m ∈ S.

This work aims to design an estimator of the class of
mean square Markov jump filters (see [18, Ch.5.3]) together
with a secrecy mechanism, such that the user MSE remains
bounded, while the eavesdropper MSE is unbounded. The
formal guarantees of this secrecy notion can be found
in Section III, see Definition 1. Here we introduce the
variables ψi and ζi that will be useful for the statement
and the proof of our main result. For i ∈ {u, e}, ψi denotes
the average probability of intercepting a measurement on
the i-th link when λ = 1, ζi is the average probability
of intercepting a measurement for λ ∈ [0, 1). Formally,
ψi ,

∑N
m=1 π

∞
i,mγ̂i,m, ζi , ψiλ.

III. OPTIMAL MEAN SQUARE EXPECTED SECRECY

We present the infinite horizon minimum mean square
Markov jump filter (see [18, Ch.5.3] with the estimation
technique provided by an estimator called current estimator
[22, Ch. 8.2.4]). Specifically, the estimator provides at each
step a model prediction obtained from the estimated state at
the previous step. This prediction is corrected by the current
measurement received ŷi(k).

Remark 2. It is well known that for the case in which the
information on the output of the system and on the MC are
available at each time step k ∈ N, the best linear estimator
of x(k) is the Kalman filter (see [18, Remark 5.2]). An
offline computation of the Kalman filter is inadvisable here
as pointed out in [23]. The reason is that the solution of the
difference Riccati equation and the time varying Kalman
gain are sample path dependent and the number of sample
paths grows exponentially in time. On the other hand, an
online computation of the Kalman filter requires online
matrix inversions which might require a lot of computation.
For this reason, we consider a different class of estimators,
for which we can pre-compute the filtering gains offline. This
allows us to avoid online matrix inversions, thus, reducing
the computational burden.

Recalling that the agent i receives a quantity that is different
from ε if and only if ϕi(k) = 1 (see Remark 1), the current



estimated state dynamics can be written as follows (see also
[22, eq. (8.33)-(8.34)]), for i ∈ {u, e}:

x̂i(k) = xi(k)− ϕi(k)M̂i,ηi(k) [y(k)− Lxi(k)] , (4)
xi(k + 1) = Ax̂i(k), (5)

where M̂i,ηi(k) is the mode-dependent filtering gain, whose
explicit expression can be found later in (9). Since the
filtering gain depends on the mode of the MC at time k, and
the MC has a given finite set of modes, it can be computed
offline (see Remark 4). From (4)-(5), by defining the error
as ẽi(k) = x(k)− xi(k), i ∈ {u, e},

ẽi(k + 1) =
(
A+ ϕi(k)AM̂i,ηi(k)L

)
ẽi(k) + w(k)

+ ϕi(k)AM̂i,ηi(k)v(k), (6)

see also [22, eq. (8.36)].

Remark 3. The error system described by (6) is a discrete-
time MJLS (see for instance [18]).

The notation presented in [18] is adopted
here: for i ∈ {u, e}, m ∈ S, let us define
Zi(k) , [Zi,m(k)]

N
m=1 ∈ HNnx,+,

Zi,m(k) , E
[
ẽi(k)ẽ∗i (k)1{ηi(k)=si,m}

]
,

with 1{ηi(k)=si,m} denoting the indicator function defined in
the usual way.
The MSE can be written as follows (see for instance [18],
[14]), E [ẽi(k)ẽ∗i (k)] =

∑N
m=1 Zi,m(k).

Given the MSE expression, we are ready to introduce the
definition of optimal mean square expected secrecy over
FSMCs.

Definition 1 (Secrecy over FSMCs). Given the system de-
scribed by (1) and the FSMCs (3), we say that a se-
crecy mechanism (2) achieves optimal mean square ex-
pected secrecy over FSMCs if and only if, for any ini-
tial condition Zi(0) ∈ HNnx,+, i ∈ {u, e}, both of the fol-
lowing conditions hold: limk→∞ tr {E [ẽu(k)ẽ∗u(k)]} <∞,
limk→∞ tr {E [ẽe(k)ẽ∗e(k)]} =∞.

Assumption 2. If the secrecy mechanism ŷ(k) = y(k) is
employed for all k ≥ 0, i.e., when λ = ζu

ψu
= 1, the user

MSE is bounded, i.e., limk→∞ tr {E [ẽu(k)ẽ∗u(k)]} <∞, for
any initial condition Zu(0) ∈ HNnx,+.

The following operator is instrumental for the presentation
of the Algebraic Riccati equation and for the technical
results exploited in the proof of the main theorem. Let
us define the operator Xλ : Fnx×nx

+ × R+ × R+ → Fnx×nx
+ ,

for λ ∈ [0, 1], X ∈ Fnx×nx
+ , α > 0, φ ∈ R+,

Xλ (X,α, φ) , (1− λφ) {AXA∗ + αQ}+

λφ
(
AXA∗ + αQ−AXL∗ (LXL∗ + αR)

−1
LXA∗

)
.

(7)

Proposition 1. Consider the error system described by (6).
Under Assumption 2, for m,n ∈ S, i ∈ {u, e}, the filtering

coupled algebraic Riccati equations (CAREs) are

Zi,n =

N∑
m=1

pi,mnXλ
(
Zi,m, π

∞
i,m, γ̂i,m

)
, (8)

M̂i,m = −Zi,mL∗
(
LZi,mL

∗ + π∞i,mR
)−1

. (9)

Proof. See appendix.

Remark 4. The filtering gain can be computed offline from
the minimization of the MSE, according to the procedure
shown in [14]. Particularly, each agent i knows the matrices
of the system, as well as the mode of the MCs ηi. Formally,
for m ∈ S, the filtering gain M̂i,m is given by (9), where
Zi,m is the solution of (8).

IV. MAIN RESULT

In this section we present necessary and sufficient conditions
concerning the FSMCs probabilities such that optimal mean
square expected secrecy is guaranteed.

Theorem 1. Consider the system described by (1), the
secrecy mechanism given by (2), and FSMCs described by
(3). Under Assumption 1 and Assumption 2, the secrecy
mechanism achieves optimal mean square expected secrecy
over FSMCs if and only if ψu > ψe.
In particular, there exists a probability ζc ∈ [0, 1) such that
optimal mean square expected secrecy is guaranteed if and
only if the probability λ in the secrecy mechanism satisfies
the following inequalities

ζc
ψu

< λ ≤ min

{
ζc
ψe
, 1

}
.

Remark 5. The inequality ψu > ψe is a reasonable condition
for secrecy in many cases of interest. Indeed, it is plausible
that the propagation environment leads to an average proba-
bility of intercepting the measurement over the eavesdropper
link, ψe, which is strictly less than ψu, for instance because
the eavesdropper might be further away from the source.

Proof. Let us show the sufficiency part. Consider for n ∈ S,
i ∈ {u, e}, k ∈ N, the following equality,

Zi,n(k + 1) =

N∑
m=1

pi,mnXλ (Zi,m(k), πi,m(k), γ̂i,m) .

Under Assumption 2, if lim
k→∞

tr {E [ẽe(k)ẽ∗e(k)]} = +∞,
we can choose λ = 1. Otherwise, since Assumptions 1-2
hold, by [24, Lemma 3], for any Z0 ∈ HNnx,+, m,n ∈ S,
i ∈ {u, e},

lim
k→∞

tr {Zi,n(k)} = +∞, for 0 ≤ λ ≤ ζc
ψi
, (10)

lim
k→∞

tr {Zi,n(k)} <∞, for
ζc
ψi

< λ ≤ 1. (11)

This implies that the probability λ in the secrecy mechanism
should be designed such that λ > ζc/ψu, in order to
guarantee (11) for the user MSE. Since the user MSE is
bounded by assumption when λ = 1, ψu × 1 > ζc, and thus
ψu > ζc implying ζc/ψu < 1.



Consider now the eavesdropper MSE. The secrecy parameter
λ should be chosen sufficiently small such that the inequality
λ ≤ ζc/ψe is satisfied. Therefore, by choosing λ satisfying
the following inequalities, ζc/ψu < λ ≤ min {ζc/ψe, 1},
the secrecy mechanism guarantees optimal mean square
expected secrecy over FSMCs by [24, Lemma 3].
Notice that the interval (ζc/ψu,min {ζc/ψe, 1}] is
nonempty: ζc/ψu < 1, and ψu > ψe implies that
ζc/ψu < ζc/ψe.
Let us show the necessity part. If the optimal mean square
expected secrecy over FSMCs is achieved by the secrecy
mechanism in (2), by [24, Lemma 3] ζc/ψu < λ ≤ 1 and
λ ≤ ζc/ψe, implying ζc/ψu < λ ≤ ζc/ψe.
Consequently, λψe < λψu, and finally ψe < ψu.
The proof of the theorem is complete.

V. EAVESDROPPER CHARACTERIZATION

Given the propagation environment, a designer can deduce
possible positions of eavesdroppers, decide which are of the
most concern, and derive an eavesdropper’s TPM.
In this section, we provide link quality constraints used
to design the secrecy mechanism attempting to increase
the eavesdropper MSE to infinity. More specifically, if the
eavesdropper TPM Pe is known, the designer is able to
construct the matrix Ae, defined as follows,

Ae ,
[
P ′e ⊗ In2

x

] [ N⊕
m=1

(1− λγ̂e,m)
(
A⊗A

)]
.

For V =
[
Vm
]N
m=1

∈ HNnx,∗ define for n ∈ S,

Se,n (V) ,
N∑
m=1

pe,mn (1− λγ̂e,m)AVmA
∗ + π∞e,nQ.

As we prove in the next proposition, it turns out that the
operator Se,n defined above provides a lower bound to
the eavesdropper MSE, under the estimator defined in (4).
Hence, we can use the above recursion to test whether the
eavesdropper has MSE that increases to infinity.

Proposition 2. Consider the system described by (1) and the
secrecy mechanism (2). The following statements hold, for
n ∈ S,
• If ρ (Ae) < 1, then lim

k→∞
tr {Ze,n(k)} ≥ tr {Se,n},

with Se,n = Se,n (Se), Se = [Se,n]
N
n=1 ∈ HNnx,+.

• If ρ (Ae) ≥ 1, then lim
k→∞

tr {Ze,n(k)} = +∞.

Proof. See appendix.

VI. EXAMPLE

This section examines an inverted pendulum on a cart [25]
whose parameters are estimated remotely over a wireless
link exposed to an eavesdropper. The considered cart’s and
pendulum’s masses are 0.5 kg and 0.2 kg, inertia about the
pendulum’s mass center is 0.006 kg ·m2, distance from the
pivot to the pendulum’s mass center is 0.3 m, coefficient
of friction for the cart is 0.1. The discrete-time system has
been obtained from discretization with sampling Ts = 0.01 s

Fig. 2: Error trajectories on cart’s position for the user
(blue trajectories) and for the eavesdropper (red trajectories)
obtained with λ = 0.3.

and linearization of the dynamical continuous time nonlinear
model around the unstable equilibrium points x∗ = 0 m,
φ∗ = 0 rad. The resulting matrix A of the discrete-time
system is such that ρ (A) ≈ 1.1 > 1. This unstable plant
evolves in open-loop.
We recall that, when the propagation environment is known,
a designer can deduce which are the possible eavesdropping
configurations allowing to overhear the user’s messages.
Consider two independent wireless links: one link for the
user, the other one for the eavesdropper. The formal math-
ematical description of a propagation environment accounts
for different parameters. The two main parameters we refer
in this description are the transmitter/receiver couple and the
transmitter/interferer couple: the transmitter/receiver couple
is the couple of interest, while the transmitter/interferer
couple models some interference that affects the propaga-
tion environment and that characterize both the user and
the eavesdropper wireless link. Let du and de denote the
distances of the couple of interest for the user and for
the eavesdropper, respectively. Let d̃u and d̃e denote the
distances of the couple transmitter/interferer for the user and
for the eavesdropper, respectively.
Consider the following scenario (see [11], [13]): du = 17 m,
d̃u = 15 m, de = 19 m, d̃e = 13 m. With this configuration
for user and eavesdropper the secrecy parameter λ guarantee-
ing the optimal mean square expected secrecy over FSMCs
belongs to the interval (0.26, 0.48], and the limit probability
ζc ≈ 0.105.
The results obtained in simulations are shown in Fig. 2
and in Fig. 3. Fig. 2 shows the error trajectories ẽi(k),
i ∈ {u, e}, obtained from 1000 Montecarlo simulations for
the user (blue lines) and the eavesdropper (red lines) with
λ = 0.3. As the reader can see, the user error trajectories
have a convergent behavior, while the eavesdropper error
trajectories diverge. Consider now Fig. 3, that reports the
eavesdropper MSE (red line) and the user MSE (blue line)
on cart’s position with λ = 0.3. The reader may notice
that the eavesdropper MSE shows a worse behavior with
respect to the user MSE: this is induced by the relation
existing between the average probabilities of successfully
receiving the system state message, ψe and ψu, over the



Fig. 3: The figure reports the MSE on cart’s position for
the user (blue line) and for the eavesdropper (red line) with
λ = 0.3.

Fig. 4: The figure reports the MSE on cart’s position for
the user (blue line) and for the eavesdropper (red line) with
λ = 1.

eavesdropper and the user link, respectively. Particularly,
in the reported example ψe = 0.219, ψu = 0.413, and thus
ψe < ψu, as required by Theorem 1. More specifically, by
comparing Fig. 4 (obtained without a secrecy mechanism)
and Fig. 3 (obtained with the proposed secrecy mechanism),
the reader may notice that the secrecy mechanism makes
the eavesdropper MSE go to infinity, while the user MSE
remains bounded (see Fig. 3).

VII. CONCLUSION

In this paper we considered secure state estimation over
Markov wireless communication channels. We bring the se-
crecy notion in [10] to FSMCs, which requires re-definition
of estimation problem and a novel technical procedure for
deriving the secrecy conditions. Moreover, we design a
secrecy mechanism satisfying the described formal require-
ments over FSMCs, and we show the effectiveness of our
result in the example of an inverted pendulum on a cart
whose parameters are estimated remotely over a wireless
link exposed to an eavesdropper.
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