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Abstract

Linear systems subject to abrupt parameter changes due, for instance,
to environmental disturbances, component failures, changes in subsystems
interconnections, etc., can be modeled as a set of discrete-time linear systems
with modal transition given by a discrete-time finite-state Markov chain. This
family of systems is known as discrete-time Markov(ian) jump linear systems
(from now on MJLSs). MJLSs represent a promising mathematical model of
cyber-physical systems, the applications of which arguably have the potential
to dwarf the fourth industrial revolution.

The bulk of the existing research on MJLSs is based on the fundamen-
tal assumption that parameters of the Markov chain are known and static.
However, in several cyber-physical systems’ applications the MJLSs’ model is
affected by abrupt and unpredictable perturbations on the underlying Markov
chain. For instance, Markov chain models of slow fading channels are derived
via measurements on real channels or via numerical reasoning, which always
introduces errors. Furthermore, fading channels can partially be compensated
for by adjusting the transmission power levels, with higher transmission power
giving less packet errors, but increasing the energy consumption and interfer-
ence with other systems. Another example can be found in the vertical take-off
landing helicopter systems, where the airspeed variation is ideally modeled as
homogeneous Markov process, but because of the external environment (like
wind) the transition probabilities of the jumps are time-varying.

We take into account the intrinsic to the real world systems uncertainty
and time-variance of the jump parameters by considering MJLSs where the
underlying Markov chain is polytopic and time-inhomogeneous, i.e., its transi-
tion probability matrix is varying over time with variations that are arbitrary
within a polytopic set of stochastic matrices. We show that the conditions
used for time-homogeneous MJLSs are not enough to ensure the stability of
the time-inhomogeneous system, and that perturbations on values of the tran-
sition probability matrix can make a stable system unstable. We present nec-
essary and sufficient conditions for mean square stability (hereupon, MSS) of
polytopic time-inhomogeneous MJLSs. We prove that deciding MSS on such
systems is NP-hard and that MSS is equivalent to exponential mean square
stability and to stochastic stability. We also derive necessary and sufficient
conditions for robust MSS of MJLSs affected by polytopic uncertainties on
transition probabilities and bounded disturbances. Then, we address and
solve for this class of systems the finite horizon optimal control and filtering
problems. In particular, we show that the optimal controller having only par-
tial information on the continuous state can be obtained from two types of
coupled Riccati difference equations, one associated to the control problem,
and the other one associated to the filtering problem. Finally, we present and
solve the finite horizon optimal control problem also for switched linear sys-
tems, where a switching signal is governed by a Markov decision process, in
polytopic time-inhomogeneous setting. We call this type of systems Markov
jump switched linear system. It generalizes the MJLSs’ framework to optimal
decision problems, with applications for example to optimal power manage-
ment of wireless networked control systems.



iv

These results construct a solid basis for the future development of novel
(correct-by-design) fault and intrusion detection, isolation and reconfigura-
tion techniques for cyber-physical systems modeled by discrete-time polytopic
time-inhomogeneous Markov jump (switched) linear systems.
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Chapter 1

Introduction

The topic of this thesis lies within the domain of hybrid systems, i.e., dynamical
systems that exhibit both continuous and discrete dynamic behavior, which

are traditionally used to model several cyber-physical systems [6].
As a matter of fact, we get exposed to the notion of Markov jump linear sys-

tems (i.e., hybrid systems with stochastic switching) while conducting a systematic
survey of the state of the art of security for cyber-physical systems from an au-
tomatic control perspective [5]. In the aforementioned survey, we have applied a
well-established methodology from the medical and software engineering research
communities, called a systematic mapping [7, 8]; we analyzed 118 studies, rigorously
selected from more than a thousand potentially relevant works, and have found that,
surprisingly, very few papers consider communication aspects or imperfections, and
attempt to provide non-trivial mathematical models of communication protocols.

Motivated by this result, we had a deeper look into communication characteris-
tics of cyber-physical systems [9], and how they are modeled in wireless networked
control systems. We realized that discrete-time time-homogeneous Markov jump
linear systems (MJLSs) are common models for networked control systems account-
ing for correlated (bursty) packet losses (see for instance [10, 11]).

We also noticed that, although seemingly almost all the issues on discrete-time
MJLSs have been tackled [12], the obtained results are actually based on the ideal
assumption that all the elements in the transition probabilities matrix are certain,
completely known, and time-invariant. However, this is not true in practice: it
is in general difficult to have an accurate estimation for (some of) the transition
probabilities, and there are several scenarios where the transition probabilities are
clearly time-varying [13].

Thus, it is more realistic to consider discrete-time Markov jump linear systems
with uncertain time-varying transition probabilities. One of such models is the
object of this thesis.

In the next sections of the introductory chapter we first present the general
domain of our work, i.e., cyber-physical systems, hybrid systems and networked

1



2 CHAPTER 1. INTRODUCTION

control systems; later on we focus our attention on discrete-time Markov jump lin-
ear system models. Specifically, at the outset we describe practical limitations of the
customary for the most MJLSs assumption that underlying parameters of Markov
chains are static and can be computed exactly. Then, we present the state of the
art of discrete-time uncertain Markov jump linear systems in general, and poly-
topic time-inhomogeneous MJLSs in particular. Lastly, we state our contribution
explicitly and outline the technical part of the thesis.

1.1 Cyber-physical systems

Cyber-physical systems (also known by their acronym, CPSs) are integrations of
computation, networking, and physical processes [14, 15]. The key characteristic of
cyber-physical systems is their seamless integration of both hardware and software
resources for computational, communication and control purposes, all of them co-
designed with the physical engineered components [16].

Cyber-physical systems are the enabling component in the fourth industrial
revolution [17, 18], and their applications arguably have the potential to dwarf the
20th century information technology (IT) revolution [14].

Among the many applications of cyber-physical systems one can find high con-
fidence medical devices and systems, assisted living, traffic control and safety, ad-
vanced automotive systems, process control, energy conservation, environmental
control, avionics, instrumentation, critical infrastructure control (electric power,
water resources, and communications systems for example), distributed robotics
(telepresence, telemedicine), defense, manufacturing, smart structures, etc.

The dynamics of cyber-physical systems are complex, involving the stochastic
nature of communication systems, discrete dynamics of computing systems, and
continuous dynamics of control systems. In fact, relevant for cyber-physical sys-
tems research domains include networked control, hybrid systems, real-time com-
puting, real-time networking, wireless sensor networks, security, and model-driven
development [9]. In particular, networked control systems and hybrid systems con-
stitute some of the theoretical foundations for design and analysis of the dynamical
behavior of cyber-physical systems.

1.2 Wireless networked control systems

Wireless control networks, also known as wireless networked control systems (hence-
forward, NCSs) are distributed control systems where the communication between
sensors, actuators, and computational units is supported by a wireless communi-
cation network. Wireless control networks have a wide spectrum of applications,
ranging from smart grids to remote surgery, passing through industrial automation,
environment monitoring, intelligent transportation, and unmanned aerial vehicles,
to name few.
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The use of wireless control networks in industrial automation results in flexible
architectures and generally reduces installation, debugging, diagnostic and mainte-
nance costs with respect to wired networks (see e.g. [19, 20] and references therein).
However modeling, analysis and design of (wireless) networked control systems are
challenging open research problems since they require to take into account the
joint dynamics of physical systems, communication protocols and network infras-
tructures.

Recently, a huge effort has been made in scientific research on NCSs, see e.g.
[10, 21–26] and references therein for a general overview. It has been widely recog-
nized that, when dealing with networked control, it is important to take a system’s
perspective and develop control algorithms that can deal with communication im-
perfections and constraints, that can be roughly categorized in five types [27], i.e.,

(i) variable sampling / transmission intervals;
(ii) variable communication delays;
(iii) packet dropouts caused by the unreliability of the network;
(iv) communication constraints caused by the sharing of the network by multiple

nodes and the fact that only one node is allowed to transmit its packet per
transmission;

(v) quantization errors in the signals transmitted over the network due to the
finite word length of the packets.

In particular, the packet dropouts have been modeled in the wireless networked
control system literature either as stochastic or deterministic phenomena [22]. The
proposed deterministic models specify packet losses in terms of time averages or in
terms of worst case bounds on the number of consecutive dropouts (see e.g. [24]).
For what concerns stochastic models, a vast amount of research assumes memoryless
packet drops, so that dropouts are realizations of a Bernoulli process [10, 23, 25].
Other works consider more general correlated (bursty) packet losses and use a
transition probability matrix (TPM) of a finite-state (time-homogeneous) Markov
chain (see e.g. the finite-state Markov modeling of Rayleigh, Rician and Nakagami
fading channels in [28] and references therein) to describe the stochastic process that
rules packet dropouts (see [10, 11]). In these works networked control systems with
missing packets are modeled as time-homogeneous Markov jump linear systems,
which are an important family of stochastic hybrid systems.

1.3 Hybrid systems

Hybrid systems, or systems that involve the interaction of discrete and continuous
dynamics, have been used as rigorous mathematical models for several important
real-world technological applications, which have inspired a great deal of research
from both control theory and theoretical computer science (see e.g. [29–36], and
references therein for a general overview).
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As described by Lygeros, Tomlin and Sastry [29], whereas researchers from
computer science community have adopted “discrete state space” point of view, by
approaching mainly the problems of composition, abstraction and formal verifica-
tion, i.e., proving that the hybrid system satisfies certain specifications, researchers
in the areas of dynamical systems and control have approached hybrid systems
from a “continuous state space and continuous/discrete time” point of view, by ex-
tending the standard modeling and simulation techniques to capture the interaction
between the continuous and discrete dynamics, and by developing new analysis and
controller design techniques.

While the results presented in this thesis rely mostly on control-theoretic ap-
proaches, they introduce hybrid models, that simultaneously account for both de-
terministic and uncertain stochastic discrete dynamics, thus allowing to advance
the topic of formally verified robust fault detection, isolation and reconfiguration
in cyber-physical systems, as outlined in Chapter 7.

Typically, the discrete dynamics of hybrid systems are modeled either within a
deterministic or a stochastic framework.

Among stochastic hybrid systems, a widely investigated class is given by Markov
jump linear systems (from here on, also referred to as MJLSs), which are the first
mathematical model on which we build our contribution, as detailed in Chapter 2.

MJLSs are described by a set of linear systems with commutations, or jumps,
generated by a finite-state Markov chain. Due to the probabilistic description of
commutations, Markov jump linear systems are well suited to model unexpected
events, uncontrolled configuration changes, random faults, and other kinds of sys-
tem changes ascribable to exogenous uncontrollable events, i.e., changes induced by
external causes (which can be referred to as “environment”, or “nature”).

When instead the switching mechanism can be governed by a supervisor (also
called a decision maker, or discrete controller), the deterministic models are more
adequate. For instance, configuration changes may be decided by the supervisor in
order to improve, or optimize, some performance index (see e.g., [37] as a general
reference).

In practice, however, the stochastic and deterministic views of hybrid systems
are not mutually exclusive.

Dual switching systems [35, 38, 39] are characterized by the simultaneous pres-
ence of a deterministic switching mechanism and a second stochastic switching
signal giving rise to jumps. When the stochastic switching is governed by a Markov
chain, these systems are also referred to as switching Markov jump linear systems.
For a real world example, Bolzern, Colaneri and De Nicolao [39] consider a wind
turbine connected to an energy storage device. The transition between the operat-
ing modes of the turbine (standby, power-optimization, power-limitation) governed
by a deterministic switching signal whose schedule is decided by the discrete con-
troller, while the transitions between the modes of the storage device (charging,
discharging, disconnected) depend on causes exogenous to the wind generation sys-
tem and are better described by a stochastic model, e.g., a Markov chain. Notice
that the stochastic switching here is independent from the deterministic switching
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mechanism, and the transition probabilities are assumed to be time-independent
and exactly known.

There are also application scenarios where the transition probabilities between
the operational modes of the system are influenced by the actions of a supervisor.
For instance, the wireless communication channels used to convey information be-
tween sensors, actuators, and computational units of a networked control system
are frequently subject to time-varying fading and interference, where the effects of
fading can partially be compensated for by adjusting the transmission power levels
(see e.g., [40]), such that a higher transmission power gives less packet errors, but
increases the energy consumption and interference with other systems. As discussed
in Section 1.2, for any given transition power level, the stochastic process that rules
packet dropouts can be modeled by the transition probability matrix of a Markov
chain. Thus, it comes naturally to use a Markov decision process (MDP) frame-
work to solve the optimal power management problem, minimizing for instance the
transmission power and continuous control cost.

The problem of optimal power management in networked control systems has
been already studied in [41], where a restricted information structure on plant
inputs and transmit powers was imposed, allowing them to be designed separately;
it was shown that the optimal deterministic switching policy follows a Markov
decision process minimizing transmit power at the sensor and state estimation error
at the controller.

Considering a Markov decision process instead of a Markov chain in a Markov
jump linear system brings to light a new type of system, that we call Markov
jump switched linear system (hereupon, MJSLS), which provides a mathematical
framework for studying optimal power management in wireless networked control
systems without any restrictions on continuous plant control inputs and discrete
switching policies regulating the transmission power values.

Compared to switching Markov jump linear systems considered in [35, 38, 39],
the MJSLS model is based on the Markov decision process framework, where the
transition probabilities between operational modes of the system depend on the
actions of a discrete controller, and for each discrete action there is an associated
cost. Furthermore, as described in Chapter 2, our MJSLS model accounts for time-
varying uncertainties in transition probabilities, where the variations are arbitrary
within a polytopic set of stochastic matrices.

A possible alternative to our formulation is to consider so-called controlled
Markov set-chains (see [42] and reference therein), which are anyhow related to
polytopic time-inhomogeneous point of view, as can be found in [43].

1.4 Limitations of the stationary exact model

To date, quite a few fundamental control issues, such as stability and stabilization,
estimation and filtering, fault detection and diagnosis, have been addressed in the
literature on discrete-time Markov jump linear systems, see [12, 13] as textbooks
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with important results and detailed examination of the general state of the art.
However, as a crucial factor governing the behaviors of Markov jump linear systems,
the transition probabilities are generally considered to be time-invariant, certain,
and often completely known in the majority of studies.

Still, in most real cases the transition probability matrix cannot be computed
exactly and is time-varying.

For example, the Markov chain models of slow fading channels [28] are derived
via measurements on real channels or via numerical reasoning, which always in-
troduces errors. Indeed, it is recognized that a fundamental issue in the design
of finite-state Markov channel models is how accurate and reliable the resulting
system performance measures are [28].

Actually, this argument applies to any kind of practical scenario involving mea-
surements and/or numerical analysis.

Furthermore, due to the influence of various environmental factors, the abrupt
and unpredictable time-varying perturbations of transition probabilities are also com-
mon in real applications. For instance, in [44] it is pointed out that in the vertical
take-off landing (often referred to as VTOL) helicopter system the airspeed vari-
ation are ideally modeled as homogeneous Markov process, but because of the
external environment (like the wind) the transition probabilities of the jumps are
time-varying; in [45] the example of failures and repairs of subsystems is considered,
where the transition probabilities deeply depend on system age and working time.

We take into account these three aspects (namely, global uncertainty due to ran-
dom and systematic errors of measurement and numerical computation procedures,
incomplete knowledge of some transition probabilities when adequate samples of the
transitions are costly or time-consuming to obtain, and time-variance due to en-
vironmental factors) simultaneously by considering polytopic time-inhomogeneous
Markov jump linear systems, as described in Chapter 2.

Our choice is motivated by the fact that uncertainty and time-variance are
intrinsic to the real world systems, and all measurement and numerical analysis
procedures give us confidence levels (determined by accuracy and precision of the
measuring instrument and/or numerical algorithm), which bound the possible val-
ues each transition probability can assume.

1.5 Literature review of the state-of-the-art

Before presenting the literature review of the research on discrete-time MJLSs
with polytopic time-inhomogeneous transition probabilities, we should mention
that other works typically account for either incomplete knowledge of transition
probability matrix, or time-variance, as summarized in the following Table 1.1.

Specifically, the incomplete knowledge of time-invariant transition probabilities
can be represented as norm-bounded [46] or polytopic uncertainties [48–52] (where
the precise values are not obtained and only the bounds of transition probabilities
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Topic Time-homogeneous transition probability matrix (is)
norm bounded partially unknown polytopic

Stability [46] [13, 47] [48]
Control [13] [48–51]

Estimation [13] [52]

Table 1.1: Works on MJLSs with incomplete knowledge on time-invariant TPMs

are available), or as partially unknown transition probabilities [13, 47] (where not
all values are available).

The uncertain transitions were introduced first for continuous-time Markov
jump linear systems in [53], where the transition rates were described by a fixed
polytope and a mode-dependent state-feedback controller was designed in the sense
of the mean square stability [13].

We observe that in our work we do not discuss the continuous-time MJLSs,
given a large number of technical nuances which pose a great deal of difficulties
to treat them satisfactorily in parallel with the discrete-time case [12], and also
because the discrete-time framework is more suitable to address networked control
applications on digital communication networks [39]. Anyway, the interested reader
may refer to [54], and also [13], for an introductory treatment of the topic.

For what concerns norm-bounded uncertainties, the sufficient conditions for the
admissible element-wise probabilities variations were derived in [46] using stochastic
Lyapunov function approach and Kronecker product transformation techniques, so
that the time-homogeneous Markov jump linear systems, in either continuous-time
or discrete-time frameworks, remain stable.

There exists a considerable number of works on discrete-time MJLSs with poly-
topic but time-invariant uncertainties in the transition probability matrix. In par-
ticular, we report here some notable works. The quadratic optimal mode-dependent
control problems with constraints on the state and control variables were considered
in [50]. The convex programming approach was used in [49] to address the state-
feedback H2 control problem (see [12, pp. 82–83] for the introduction to the topic),
with or without assuming the Markov (operational) mode availability. A sufficient
condition for robust stability was proposed in [48], where also state-feedback con-
troller design problem based on linear matrix inequalities (LMIs, see e.g. [55] for a
general discussion) was stated, for both the mode-dependent or mode-independent
cases. The LMIs-based methods to determine H2 and H∞ norm bounded filters
were presented in [52], in which different assumptions on Markov mode availability
to the filter and on system parameter uncertainties were taken into account. Fi-
nally, the H∞ output feedback control problem (see [12, pp. 143–145] for additional
details on the subject) under the cluster availability of the operational mode was
addressed in [51], where a sufficient LMI condition that guarantees the H∞ norm
of the closed-loop system is below a prescribed level was also provided.
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Time-inhomogeneous transition probability matrix
Topic non deterministic stochastic

polytopic piecewise homogeneous semi-Markov
Stability [62, 63] [64] [13]
Control [65–72] [13, 73]

Estimation [45, 74, 75] [13, 76]
Fault detection [44]
Model reduction [13]

Table 1.2: Works on MJLSs with incomplete knowledge on time-varying TPMs

For Markov jump linear systems with stationary (also referred to as time-
invariant) transition probabilities, it is possible to consider that some elements
of the corresponding transition probability matrix are not available. The so-called
partially unknown model of transition probabilities was first proposed in [47]. Sev-
eral works had followed, addressing stability analysis and stabilization problems,
H2 and H∞ performance analysis, control and filtering problems, fault detection
and model reduction of the underlying systems, as described in detail in [13].

Nevertheless, the partially unknown model does not account for global uncer-
tainty and time-variance. Furthermore, it is proven in [52] that the polytopic uncer-
tainty model is more general than the partly known element one, in the sense that
the latter is a particular case of the former. Moreover, the uncertainty modeled with
a fixed convex polytope may also represent an uncertainty domain more precisely
than the norm-bounded uncertainty and, consequently, causes no conservatism for
a particular structure [56].

An alternative approach in dealing with incomplete knowledge on transition
probabilities is to characterize the relative likelihood for uncertain time-varying
transition probabilities to occur at a given constant. In this case, the truncated
Gaussian probability density function can be used to quantize the uncertain in-
formation of transition probabilities, as shown in [57–60], where the problems of
finite-time stabilization, and H∞ control and filtering were addressed.

The uncertainties in time-inhomogeneous characteristics of transition probabil-
ities, in general, can be determined by either non-deterministic or stochastic varia-
tions, as summarized in the following Table 1.2. The polytopic time-inhomogeneous
Markov jump (switched) linear systems studied in this thesis, and MJLSs governed
by piecewise homogeneous Markov chains subject to an arbitrary high-level switch-
ing signal (e.g., the signal with average dwell time approaching zero [61, Remark 2])
account for the first type of variations, while semi-Markov jump linear systems [13,
Part III] and piecewise homogeneous Markov jump linear systems with transition
probabilities themselves governed by a higher-level Markov chain [13, Part II] pro-
vide a rationale for stochastic variations.

Discrete-time piecewise homogeneous Markov jump linear systems were first
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introduced in [76] to account for both arbitrary variation and stochastic variation
of transition probability matrices. The distinct characteristic of these systems is
that their transition probabilities are varying but invariant within a time interval.
Specifically, the non-deterministic variations are governed by arbitrary switchings
and slow switching signals where the number of switches in a finite interval is
bounded and the average time between two consecutive switchings of transition
probability matrices is larger or equal to a constant [13]. In case of stochastic
switching, the variations are subject to higher-level transition probability matrices.

To date, several useful results on H∞ control, state estimation, and model
reduction for MJLSs with piecewise homogeneous transition probabilities have been
reported [13, 73, 76], where bounded H∞ performance criteria (i.e., the so-called
bounded real lemmas, often indicated by acronym BRL) were provided in therms of
linear matrix inequalities.

Other interesting results closely related to piecewise homogeneous Markov jump
linear system model are the following.

For MJLSs with time-varying transition probability matrix, which takes values
in a finite set randomly at each time step, Zhao and Liu [77] have studied transition
probability matrix estimation problem within the Bayesian framework, finding a
recursive updating formula.

For Markov jump linear systems with transition probability matrices taking val-
ues in the finite set and switching governed by possibly a priori unknown sequence,
Lutz and Stilwell [64] have presented necessary and sufficient conditions for uniform
exponentially mean square stability (UEMSS) and uniform stochastic disturbance
attenuation, expressed as a set of finite-dimensional LMIs that can be solved effi-
ciently. This work used time-varying quadratic Lyapunov function arguments.

When the sojourn time in discrete-time MJLSs’ operational modes does not
follow geometric distribution, the transition probabilities are time-varying and have
a “memory” property, resulting in so-called semi-Markov jump linear systems. See
[13] for a formal introduction of such systems, and detailed treatment of stability
and stabilization via semi-Markov kernel (where the probability density function of
sojourn-time is dependent on both current and next system mode) and time-varying
Lyapunov function approach.

Noticeably, both semi-Markov jump linear systems and MJLSs with piecewise-
constant transition probabilities subject to a higher-level transition probability ma-
trix require a prior knowledge of time-varying behavior of transitions between op-
erational modes of the system, in order to describe the involved stochastic varia-
tions. Furthermore, similarly to the case of piecewise homogeneous Markov jump
linear systems governed by an arbitrary average dwell time signal, the considered
variations need to be in a finite set. This requirement implies the fundamental
assumption that the transition probabilities can be computed exactly.

The polytopic time-inhomogeneous (hereupon, PTI) MJLSs model does not
have such limitations. It has been used in several recent works on (robust) H∞
control, filtering and fault detection [44, 45, 65, 66, 74]. These works generally pro-
vide sufficient conditions based on linear matrix inequalities and Lyapunov func-
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tional approaches for the existence of H∞ controllers [65, 66], H∞ filters [45, 74]
and H∞/H− fault detectors [44]. Notably, Long and Yang [44] studies fault detec-
tion based on delta operator approach, and gives a new definition of stochastic H−
index [78, 79] (i.e., a measurement of sensitivity from the residuals to the faults)
and provides a sufficient condition for designing a H∞/H− fault detection filter
guaranteeing a stochastic stability of considered Markov jump linear systems.

The polytopic description of time-varying transition probability matrices can be
found also in works on non-linear Markov jump systems. For instance, an on-line
optimal model predictive controller design algorithm, which uses stochastic stability
and Lyapunov function, has been presented in [80] for a noiseless non-linear sys-
tem. So-called Markov jump Lur’e systems (which are MJLSs with sector-bounded
mode-dependent memoryless nonlinearities) subject to sensor saturation (handled
by a decomposition approach) have been studied in [81], where, by constructing a
stochastic multiple Lyapunov function, sufficient conditions for the existence of an
observer-based controller with nonlinear feedback terms were derived in terms of
LMIs, such that the closed-loop systems are stochastically stable and satisfy a given
`2–`∞ performance index. Observing that most of the mode-dependent methods
available rely on the ideal assumption that the switches of filters are strictly synchro-
nized with those of the system modes, Zhang et al. [82] has studied the problem
of asynchronous H∞ estimation for two-dimensional Markov jump systems with
nonlocal sensor nonlinearity in the Roesser model. This work has considered infi-
nite horizon setting, where mean square (asymptotic) stability [83] is required, and
presented a solution by means of linear matrix inequalities. Then, Yin et al. [84]
used a parameter-dependent and a mode-dependent Lyapunov function approach
to present LMI-based sufficient conditions for the existence of an admissible mode-
dependent H∞ filter for a Takagi and Sugeno (T-S) fuzzy model of a non-linear
Markov jump system. Based on this condition, it has designed a mode-dependent
fuzzy filter in a way that the augmented system is stochastically stable and satisfies
a prescribed H∞ performance index. The same considerations and approach were
used in [85] for a robust fuzzy L2 - L∞ filter design.

For MJLSs with polytopic time-inhomogeneous transition probability matrices,
the similar approach can be found in applications to several problems, such as
robust L2 - L∞ filtering in [75], constrained model predictive control (henceforward,
MPC) in case of bounded disturbances (considering the mixedH2/H∞ performance
index) in [67] and N-step off-line MPC in noiseless case in [68], mode-dependent
output peak state feedback control under unit-energy disturbance in [69], robust
state-feedback H∞ control and observer-based H∞ control respectively in [70, 71]
and in [72], the last one then extended to the case of actuator saturation, modeled
as a nonlinear input, in [65].

The problem of H∞ filter design for singular time-delay MJLSs with polytopic
time-varying transition probability matrices has been examined in Ding et al. [74].
By using the Lyapunov functional approach and reciprocally convex technique,
this work has established a less conservative delay-dependent bounded real lemma
and a sufficient condition for the existence of mode-dependent full order filter which
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guarantees the stochastic stability satisfying H∞ performance index of the resulting
filtering error system.

Some works have addressed also the (mean square) stability problem for Markov
jump linear systems having a transition probability matrix time-varying within a
polytope. Notably, in [62] a sufficient condition for stochastic stability in terms
of LMI feasibility problem was provided. The approach of [62] made use of a pa-
rameter dependent stochastic Lyapunov function. The Aberkane’s [62] work also
presented a solution to a state-feedback control design problem for stochastic sta-
bilization purposes in two different cases (depending on the available information
level). In [63], instead, a sufficient condition for mean square stability of a Markov
jump linear system with interval transition probability matrix, which in turn can be
represented as a convex polytope [43], was presented in relation to spectral radius.
In general, before our contribution, described in detail in the next section, only suf-
ficient stability conditions have been derived for MJLSs with time-inhomogeneous
Markov chains having transition probability matrix arbitrarily varying within a
polytopic set of stochastic matrices.

Our novel results on necessary and sufficient conditions valid for different types
of stability (including not only both mean square stability and stochastic stabil-
ity, but also exponential mean square stability and robust mean square stabil-
ity) have opened up an unexplored research line on discrete-time polytopic time-
inhomogeneous Markov jump linear systems related to problems of robust linear
quadratic regulation, optimal robust filtering, separation of estimation and control,
etc., which is the main contribution of this thesis, and is described in detail in the
next section.

1.6 Contribution and outline

In this section, we outline the contents of the thesis and the major contributions.
The main contribution of the thesis is given in four chapters, and the material

is organized as follows:
Chapter 3 Necessary and sufficient conditions for stability of discrete-time

time-inhomogeneous Markov jump linear systems affected by poly-
topic uncertainties on transition probabilities, with or without a
bounded process noise.

Chapter 4 Finite-horizon optimal filtering for discrete-time polytopic time-
inhomogeneous Markov jump linear systems affected by a wide sense
white noise.

Chapter 5 Finite-horizon linear-quadratic regulation for the same discrete-
time polytopic time-inhomogeneous Markov jump linear systems
affected by a wide sense white noise; the principle of separation
of estimation and control, and derivation of optimal finite-horizon
linear-quadratic output-feedback controller.
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Chapter 6 Finite-horizon optimal linear quadratic state-feedback control for
discrete-time polytopic time-inhomogeneous Markov jump switched
linear systems.

In more detail, the outline of the thesis is as follows.

Chapter 2: Model formulation
In Chapter 2 we formally introduce the mathematical models of discrete-time poly-
topic time-inhomogeneous Markov jump linear systems and Markov jump switched
linear systems, which were already named in Section 1.3. We put a particular at-
tention on the formal definition of the stochastic bases, transition probabilities, and
all system variables and matrices used throughout this text.

Chapter 3: Stability issues
In Chapter 3 we provide necessary and sufficient conditions for mean square stabil-
ity of discrete-time polytopic time-inhomogeneous autonomous Markov jump linear
systems. Such conditions require to decide whether the joint spectral radius (see
appendix’s Subsection B.4 for its formal definition and properties) of a finite family
of matrices is smaller than 1. While it is well known that the stability analysis
problem for general switching systems (i.e., deciding whether the joint spectral ra-
dius is smaller than 1) is NP-hard [86], we prove that it is NP-hard even for the
matrix structure deriving from our particular model. We also prove that mean
square stability is equivalent to exponential mean square stability and to stochastic
stability. Then, we extend such results deriving necessary and sufficient conditions
for mean square stability robust to energy-bounded disturbances. Notably, the
considered discrete-time time-inhomogeneous MJLSs are affected not only by poly-
topic uncertainties on transition probabilities but also by bounded disturbances.
The presented conditions also require to decide whether the joint spectral radius
of a finite family of matrices is smaller than 1. Finally, we show that having the
spectral radius smaller than one for each matrix associated to the second moment
of the state vector is not enough to ensure the stability of the time-inhomogeneous
system, and that perturbations on values of transition probability matrix can make
a stable system unstable.

The chapter is based on the following papers:

• Y. Zacchia Lun, A. D’Innocenzo, and M.D. Di Benedetto, "On stability of
time-inhomogeneous Markov jump linear systems," in Proceedings of the 55th
IEEE Conference on Decision and Control (CDC 2016), pp. 5527–5532, Dec.
2016.

• Y. Zacchia Lun, A. D’Innocenzo, and M.D. Di Benedetto, "Robust stability of
time-inhomogeneous Markov jump linear systems," in Proceedings of the 20th
World Congress of the International Federation of Automatic Control (IFAC
2017), pp. 3473–3478, July 2017.
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Chapters 4 and 5: Optimal robust filtering and control

Following the same research line, in Chapters 4 and 5 we address and solve the finite
horizon optimal control and filtering problems for polytopic time-inhomogeneous
Markov jump linear systems. In particular, we cast these optimization problems as a
min-max problem of optimizing robust performance, i.e., finding the minimum over
the control input or filtering error of the maximum over the transition probability
disturbance. We show that, as for linear-quadratic-Gaussian (LQG) control in the
case with no jumps, for the finite horizon case considered in this thesis, the optimal
controller can be obtained from two types of coupled Riccati difference equations,
one associated to the control problem, and the other one associated to the filtering
problem. When the transition probabilities between operation modes are known at
each time step, our results coincide with those presented in [12], and when there is
only one mode of operation, they coincide with the traditional separation principle
for the LQG control of discrete-time linear systems.

The material presented in these two chapters was accepted for presentation at

• Y. Zacchia Lun, A. D’Innocenzo, A. Abate, and M.D. Di Benedetto, "Optimal
robust control and a separation principle for polytopic time-inhomogeneous
Markov jump linear systems," in Proceedings of the 56th IEEE Conference on
Decision and Control (CDC 2017) [accepted], Dec. 2017.

Chapter 6: Extension to switched systems

In Chapter 6 we consider the more general model of polytopic time-inhomogeneous
switched Markov jump linear systems, where discrete inputs are present and the
Markov-chain turns into a (time-inhomogeneous) Markov-decision process (MDP,
see appendix’s Subsection B.6 for additional details), and derive the optimal solu-
tion of the finite-horizon optimal linear quadratic state-feedback problem.

The material presented in this chapter is mainly based on the publication

• Y. Zacchia Lun, A. D’Innocenzo, and M.D. Di Benedetto, "Robust LQR for
time-inhomogeneous Markov jump switched linear systems," in Proceedings of
the 20th World Congress of the International Federation of Automatic Control
(IFAC 2017), pp. 2235–2240, July 2017.

Chapter 7: Conclusions and future work

In Chapter 7 we conclude the main part of the thesis.

Appendix A

In Appendix A we list all the main abbreviations and initialisms used.
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Appendix B
In Appendix B we present the notational conventions applied throughout the text
and the mathematical background necessary to understand and prove the results
of our work. Specifically, we recall the relevant concepts used in set theory, linear
algebra, and probability theory.

Appendix C
In Appendix C we list the mathematical symbols used in our presentation.

Appendix D
We already mentioned in the introduction to this thesis, that our survey [5] of cyber-
physical security from an automatic control perspective has ignited our interest
in Markov jump linear systems. In Appendix D we report the main findings of
the aforementioned survey, since it presents a powerful comparison framework for
existing and future research on the hot topic of security in cyber-physical systems,
important for both industry and academia, and presents an important application
domain for the results of this thesis. The contents of this final chapter of appendix
are based on the following work:

• Y. Zacchia Lun, A. D’Innocenzo, I. Malavolta, and M.D. Di Benedetto,
"Cyber-physical systems security: a systematic mapping study," in arXiv
preprint arXiv:1605.09641, 2016.



Chapter 2

Model formulation

Linear systems subject to abrupt parameter changes due, for instance, to envi-
ronmental disturbances, component failures, changes in subsystems intercon-

nections, changes in the operation point for a non-linear plant, etc., can be modeled
by a set of discrete-time linear systems with modal transition given by a discrete-
time finite-state Markov chain. This family of systems is known as discrete-time
Markov(ian) jump linear systems, often abbreviated as MJLSs.

A useful diagram representing a simple autonomous noiseless Markov jump lin-
ear system, i.e., a dynamical system defined as xk+1 =Aθkxk, where xk is system’s
state and Aθk is the related transformation matrix, which depends on the state of
the Markov chain θ, is illustrated in Figure 2.1.

Figure 2.1: Diagram representing a simple MJLS at time step k

The parameters of Markov chain governing the jumps between N operational
modes of the system are called transition probabilities and will be extensively dis-
cussed in this chapter.

The true parameters of a Markov chain are frequently time-varying and un-
available to the modeler, and a large body of research has been devoted to deal
with these uncertainties (as underlined in the previous chapter) and also to the
identification of the Markov chain using available observations (see [87] and ref-

15
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erences therein for an introduction to the topic of estimation of such transition
probabilities, which always introduces estimation errors).

We have argued in the previous chapter that in order to account for uncertain-
ties and time-variance inherent to real world scenarios, the time-inhomogeneous
polytopic model of transition probabilities is very general and widely used.

In this chapter we present a rigorous mathematical model of MJLSs with poly-
topic uncertainties on transition probabilities and also the model of their natural
extention, i.e., Markov jump switched linear systems (MJSLSs).

We introduce first the general model of Markov jump linear systems in Sec-
tion 2.1, where we neglect some measure-theoretical details on the probability space
and stochastic basis on which both MJLSs’ and MJSLSs’ models rely on, because
these details are not essential to get a flavor of the model and are formally explained
in Section 2.2. Then, in Section 2.3 we present a model of polytopic time-varying
uncertainties on transition probabilities, which is used in both Markov jump linear
systems and Markov jump switched linear systems, i.e., the stochastic hybrid sys-
tem models with which we are dealing with in this thesis. Finally, in Section 2.4
we formally introduce the model of MJSLSs used to solve the related problem of
the optimal robust linear quadratic regulation in Chapter 6.

On a side note, in Appendix B one can find a formal introduction to the relevant
concepts from set theory, linear algebra, and probability theory.

2.1 Discrete-time Markov jump linear systems

Essentially, when we think about discrete-time Markov jump linear systems, we
have in mind variants of the following class of dynamical systems:

xk+1 = Aθkxk+Bθkuk+Hθkvk,
yk = Fθkxk+Gθkwk,
zk = Cθkxk+Dθkuk,
x0 = x0, θ0 = ϑ0, p0 = p0

(2.1)

where k ∈ T is a discrete-time instant, T is a discrete-time set, T = Z0, with Z0
indicating the set of all nonnegative integers, i.e., Z0 , {i∈Z : i≥ 0}, Z being the
set of integers. Then, xk is a vector of nx either real or complex state variables of
the Markov jump linear system. Formally, we write that nx ∈Z+, where Z+ is a
set of positive integers, i.e., {i ∈ Z : i > 0}, and xk ∈ Fnx , where Fnx denotes an
nx-dimensional linear space, with entries in F. See Appendix B for a mathematical
background on linear spaces, and other topics necessary for a formal treatment
of stochastic hybrid systems. As one can expect from what was stated before, F
indicates the set of all either real numbers (denoted by R) or complex numbers
(identified by C). See Appendix C for the complete list and explanation of all
mathematical symbols used throughout the thesis. For what concerns other system
variables in the aforementioned state-space representation of an MJLS, uk stands
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for a vector of nu control input variables, uk∈Fnu ; then, vk∈Fnv and wk∈Fnw are
vectors of exogenous input variables, known as process noise and observation noise,
respectively; yk ∈ Fny represent a vector of measured state variables available to
the controller; and zk ∈Fnz denotes a vector of measured system output variables.
Clearly, nu, nv, nw, ny, nz∈Z+.

We should note that we define the system variables on a field of either real or
complex numbers F. In general, when studying MJLSs, it is a standard practice
to work with complex fields [12], but as observed in Remark B.1 of appendix’s
Subsection B.4, one can consider complex operators acting on Cm,n as real (block)
matrices acting on R2m,2n [88]. Having this remark in mind, in the following we
write Fm,n to denote a set of matrices with m rows, n columns, and entries in F,
or, equivalently, a set of linear maps between two linear spaces Fn and Fm. See
appendix’s Subsections B.4 and B.4 for additional details on linear operators and
transformation matrices.

Consequently, the elements of the system matrices Aθk , Bθk , etc., are also de-
fined on a field of either real or complex numbers F. The subscript θk indicates that
system matrices active in a time instant k are determined by the value of the jump
variable θk, which is a random variable having the set M, {i∈Z+ : i≤N} as its
state space, where N ∈Z+ is the cardinality of the set, i.e., a number of its elements.
We write the last statement formally as |M|=N . The set M is generally referred to
as the (index) set of operational modes of the Markov jump linear system. Before
the formal introduction of the exact domain of the random variable θk, without loss
of generality we present it here simply as the identity function of set of operational
modes, i.e., θk : M→M, and ∀i∈M, we have that θk(i) = i. See appendix’s Sec-
tion B.6 for additional details on stochastic processes and related random variables,
and Section 2.2 for a formal definition of the probability space and the stochastic
basis of a Markov jump linear system as a whole. For every operational mode
there is a correspondent system matrix, and the collection of the system matri-
ces of each type is generally represented by a sequence of N matrices, which are
not necessarily all distinct. Specifically, A , (Ai)Ni=1 ∈ NFnx,nx is a sequence of
so-called state matrices, each of which is associated to an operational mode of the
(switching) system. Noticeably, NFm,n indicates a linear space made up of all N -
sequences of m×n matrices with entries in F. Similarly, B , (Bi)Ni=1 ∈ NFnx,nu

is an N -sequence of input matrices; C , (Ci)Ni=1 ∈NFnz,nx is a sequence of output
matrices; D , (Di)Ni=1 ∈ NFnz,nu is a sequence of direct transition (also known as
feed-forward or feedthrough) matrices; F ,(Fi)Ni=1∈NFny,nx is a sequence of obser-
vation matrices; G,(Gi)Ni=1∈NFny,nw is a sequence of observation noise matrices;
and H,(Hi)Ni=1∈NFnx,nv is a sequence of process noise matrices.

The transitions, or jumps, between operational modes of an MJLS are governed
by a discrete-time Markov chain θ, which, loosely speaking, is a collection of random
variables θt all taking values in the same state space, i.e., {θt : t∈T}, and satisfying
the Markov property, which is formally expressed in appendix’s Subsection B.6
by (B.82). See next Section 2.2 for a rigorous measure-theoretic definition of θ,



18 CHAPTER 2. MODEL FORMULATION

and Section 2.3 for accurate definition of polytopic time-inhomogeneous model of
transition probabilities.

Last but not least, the initial conditions for a Markov jump linear system consist
of the initial state of the system, x0 (which has x0 ∈ Fnx as its value), initial
state of the Markov chain, θ0 (with ϑ0∈M being its value), and initial probability
distribution of the states of the jump variable θ0, denoted by p0 (and having p0∈RN0
s.t. ‖p0‖1 =1, as its value; clearly, ‖·‖1 indicates the standard grid norm of a vector,
formally defined in appendix’s Subsection B.3, and RN0 evidently represents the N -
dimensional linear space with entries in the set of nonnegative real numbers, i.e.,
R0 ={i∈R : i≥0}).

2.2 Probability space and stochastic basis

In this section we present in detail the probabilistic framework we shall consider
throughout the rest of the thesis. The appendix’s Sections B.5 and B.6 provide a
theoretical background for this topic.

The most formal, measure-theoretic definition of a stochastic hybrid system,
such as a Markov jump linear system in equation (2.1), requires an explicit presen-
tation of its stochastic basis, which is determined by a product space of involved
variables.

We have seen in the previous section that at each time instant k the active
system matrices depend on the value of the jump variable θk. This discrete ran-
dom variable takes values in the set M = {i ∈ Z+ : i≤N} and, when considered
on a generic probability space, without loss of generality is specified as an iden-
tity function, that is, θk : M→M and θk(i) = i. Thus, the measurable space, on
which the target set (a.k.a. codomain) of θk is defined, is a pair (M,M), while the
probability space determining the domain of θk is defined by a triple (M,M,Pr),
where M⊆ 2M is a σ-algebra of measurable events of M, and Pr : M→ [0, 1] is a
probability measure. Clearly, [0, 1] indicates a closed interval on the real line, i.e.,
{x∈R : x≥0, x≤1}. Under a standard for MJLSs assumption that θk is measur-
able, and that the operational modes of the system are elementary, mutually exclu-
sive (i.e., disjoint) events, we have that the probability distribution of θk is its prob-
ability mass function, i.e., ∀i∈M, we have that pi , Pr({i : θk(i)= i}) = Pr(θk= i).
We note that the expression of pi is intended for a random variable θk alone, i.e.,
pi = pi(θk). When θk is a part of a Markov chain {θk : k∈T}, the probability dis-
tribution of θk is denoted by pi(k), i.e., similarly to the random variable itself, the
probability distribution is also indexed by time instant k. In that case, ∀k ∈ T,
the total mass of the probability distribution of the discrete random variable θk is
written as

∑N
i=1 pi(k)=1.

Although in engineering problems the operation modes are not often available,
there are enough cases where the knowledge of random changes in system structure
is directly available to make these applications of great interest [12, 89]. The typical
examples include a ship steering autopilot, control of pH in a chemical reactor,
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combustion control of a solar-powered boiler, fuel air control in a car engine and
flight control systems [12]. We remark that MJLSs’ model is well suited also for the
wireless networked control system scenario, when a channel estimation is performed
(see e.g. [90] and the references therein), so the channel state information is known
at each time step. In fact, the knowledge of θk at each time instant k is a standard
assumption, which is used in vast majority of works reviewed in Section 1.5. So,
throughout this thesis we do the following assumption.

Assumption 2.1. At every time step k ∈ T, the jump variable θk is measurable
and available to a controller.

Depending on the considered problem, (some of) the system’s vector variables
xk, uk, yk and zk may also be viewed as measurable.

Notably, the set of possible values of xk is generally a subset of Fnx , i.e., a prod-
uct space of nx either real or complex variables. When it is defined as a set of real
numbers, the corresponding σ-algebra is Borel-σ-algebra Rnx . See Subsection B.5
of appendix for a formal definition of product Borel-σ-algebras. When the system’s
state vector is defined on a complex field, the relevant σ-algebra is Borel-σ-algebra
R2nx . In the following, we denote a σ-algebra of xk by X . Thus, the measurable
space of the system’s state vector xk is denoted by (Fnx ,X ), that corresponds to
either (Rnx ,Rnx) or

(
Cnx ,R2nx

)
.

Similarly, the set of possible values of uk is a subset of Fnu . The connected σ-
algebra is either Borel-σ-algebraRnu orR2nu , and is denoted by U . The measurable
space of the system’s control input uk is then a pair (Fnu ,U), interpreted as either
(Rnu ,Rnu) or

(
Cnu ,R2nu

)
.

On the same line, the set of possible values of yk is a subset of Fny . The related
σ-algebra is either Borel-σ-algebra Rny or R2ny . It is denoted by Y. The corre-
spondent measurable space of the vector yk is a pair (Fny ,Y), which is understood
as either (Rny ,Rny) or

(
Cny ,R2ny

)
.

Analogously, the set of possible values of zk is a subset of Fnz . The associated
σ-algebra is either Borel-σ-algebra Rnz or R2nz , and is denoted by Z. Conse-
quently, the measurable space of the system’s output vector zk is a pair (Fnz ,Z),
corresponding to either (Rnz ,Rnz) or

(
Cnz ,R2nz

)
.

For what concerns specific problems, from (2.1) it is evident that for any given
value of current system’s state xk, control input uk and process noise vk, the value
of the MJLS’s state vector in the immediate future, i.e., xk+1, depends on the
latest value of the jump variable θk through the system matrices Aθk , Bθk and
Hθk . In other words, the next future state xk+1 of the system is determined by
the current operational mode. Thus, once the current values of the system’s state
xk, control input uk and process noise vk are fixed, the current system’s state xk
behaves as a random variable having a number equal to N of possible future values,
which occurrence is determined by a discrete probability distribution of θk. So, the
probability space of xk is a triple (Fnx ,X ,Pr), where its sample space, σ-algebra of
events and probability measure are defined as before.
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Scenario 1: All system’s state variables are measurable
In the problems considering stability and state-feedback control, which are treated
formally in Chapters 3 and 5, the system’s state vector xk together with the jump
variable θk are regarded as measurable at each time step k.

Thus, the underlying stochastic basis is constructed as follows.
The sample space which takes into account all time values k∈T is defined as

Ωx,
∏∏∏∞

k=0
(M×Fnx) (2.2)

where
∏∏∏

denotes the Cartesian product of a sequence, and subscript x indicates
that together with Markov chain θ, the sample space Ωx accounts for the collection
of random variables xk, which are indexed by the discrete time set T.

The corresponding filtration Gk requires the introduction of bounded discrete-
time set Tk, which is defined as {t∈T : t≤k}.

We have the following recursive definition of the filtration:

Gk,σ
{∏∏∏k

t=0
(Θt×St)×

∏∏∏∞

τ=k+1
(M×Fnx) : Θt∈M, St∈X , ∀t∈Tk

}
(2.3)

so that (Gk)↗, i.e., it is a monotone non-decreasing sequence of product σ-algebras,
since by construction its elements satisfy the property of being G0⊆G1⊆G2⊆· · ·

Then, the product σ-algebra G is defined simply by

G,σ
{∏∏∏∞

t=0
(Θt×St) : Θt∈M, St∈X , ∀t∈T

}
(2.4)

Clearly, Gk⊆G.
Hence, the corresponding stochastic basis (a.k.a. filtered probability space) of

Markov jump linear systems considered in the problems of stability and state-
feedback control is defined by the quadruple (Ωx,G, (Gk) ,Pr), where the sample
space Ωx is defined as in (2.2), the σ-algebra G is characterized by (2.4), and the
filtration (Gk) is determined by (2.3), while the probability measure Pr : G→[0, 1]
is such that, according to the Markov property (B.82), ∀j∈M

Pr(θk+1 =j | Gk) = Pr(θk+1 =j | θk) = pθkj(k) (2.5)

where the random variable θk has the sample space Ωx as its domain, i.e., the
jump variable is formally defined here as θk : Ωx →M, such that ∀ω ∈ Ωx, with
ω,{(φk, χk) : k∈T, φk∈M, χk∈Fnx}, one has that θk(ω)=φk.

The transition probability between the operational modes i, j∈M of a Markov
jump linear system is formally defined as

pij(k) , Pr(ω : θk+1(ω)=j | θk= i) = Pr(θk+1 =j | θk= i)≥0 (2.6)

Clearly, since pij(k) is a probability distribution, ∀i∈M, one has that the total
mass of the distribution equals to 1, i.e.,∑N

j=1
pij(k)=1 (2.7)
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Evidently, θx,{θk : k∈T}, with θk : Ωx→M defined above, is a Markov chain
with transition probability matrix (henceforth, TPM)

P (k) , [pij(k)] ∈ RN,N (2.8)

In this thesis we assume that transition probabilities between the operational
modes of a stochastic system are arbitrarily time-varying within a bounded domain.
The formal model of this behavior will be presented in the next Section 2.3.

The initial probability distribution of the Markov chain θx is defined ∀i∈M by

pi(0) , Pr(ω : θ0(ω)= i) = Pr(θ0 = i) (2.9)

Then, the initial probability distribution of all the operational modes is defined as

p0,


p1(0)
p2(0)
...

pN (0)

∈RN,1 (2.10)

In order to present our result on mean square stability robust to energy-bounded
disturbances, we need to formally introduce also the related linear spaces, defined
on the presented probability space.

Following the line of reasoning of Costa et al. [12], we set Hn,L2(Ωx,G,Pr,Fn)
the Hilbert space of all Fn-valued G-measurable random variables with inner prod-
uct given ∀x, y ∈ Hn by 〈x, y〉 = E (x∗y), and Euclidean norm denoted by ‖·‖2.
Henceforth, E (·) denotes the expected value of a random variable. See appendix’s
Section B.6 for a standard definition of the expected value, and Section B.3 for
additional details on Hilbert spaces and inner products.

We set `2(Hn) ,
⊕

k∈T Hn, the direct sum of countably infinite copies of Hn,
which is a Hilbert space made up of collections of all Fn-valued G-measurable ran-
dom variables indexed by the discrete time set T, i.e., f = {fk∈Hn : k∈T}, such
that ‖f‖22 ,

∑∞
k=0 E

(
‖fk‖2

)
<∞. For any given f, g ∈ `2(Hn), the inner product

is 〈f, g〉,
∑∞
k=0 E(f∗kgk)≤‖f‖2 ‖g‖2. See appendix’s Section B.4 for additional de-

tails on direct sum, and Section B.3 for a brief introduction to series and absolute
convergence of sequences.

Then, we define Hn⊆`2(Hn) as follows. We say that f ={fk∈Hn : k∈T}∈Hn if
f∈`2(Hn) and fk∈L2(Ωx,Gk,Pr,Fn) ∀k∈T, where Gk is defined by (2.3). We have
thatHn is a closed linear subspace of `2(Hn) and therefore a Hilbert space [12, p.21].
We also define Hnk as formed by sequences (ft)kt=0, s.t. ft∈L2(Ωx,Gt,Pr,Fn), ∀t∈Tk.

Finally, we denote by Θ0 the set of all G0-measurable random variables taking
values in M. This permits us to state the initial conditions for a Markov jump
linear system with θk and xk measurable ∀k∈T as

x0 ∈ Hnx
0 , θ0 ∈ Θ0 (2.11)
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When a MJLS is defined on a stochastic basis (Ωx,G, (Gk) ,Pr), one have that
θk and xk are measured in each time step k ∈ T, and thus yk = xk, i.e., nx = ny,
meaning that all the system’s state variables are available to the controller. Then,
the control input uk is a (non-random) signal the controller chooses to apply to
the system at time step k. In adaptive control scenario, when uk is defined as an
(operational) mode-dependent function of xk, one has that uk : Ωx→Fnu is (Gk,U)-
measurable. In such scenario, from (2.1) it is evident that zk : Ωx×Fnu → Fnz is
(Gk×U ,Z)-measurable. See appendix’s Subsection B.5 for additional details on
measurable functions.

Scenario 2: Some system’s state variables are measurable
When not all the state variables are available to the controller, the system’s state
estimation is required. The aforementioned scenario is described in Chapter 4.
There, at each time step k ∈ T, instead of xk, yk is considered to be measurable
together with θk. Remarkably, we have that ny≤nx, where ny evidently denotes
the number of measured state variables, and nx is a total number of system’s state
variables. The dynamics of yk clearly follow the dynamics of xk and the measured
system’s state is regarded as a random variable. The construction of the stochastic
basis is very similar to the previous one.

In particular, the sample space is defined as

Ωy,
∏∏∏∞

k=0
(M×Fny) (2.12)

where the subscript y states that the collection of random variables yk is considered.
The corresponding filtration is defined recursively as

Fk,σ
{∏∏∏k

t=0
(Θt×St)×

∏∏∏∞

τ=k+1
(M×Fny) : Θt∈M, St∈Y, ∀t∈Tk

}
(2.13)

so that F0⊆F1⊆F2⊆· · ·⊆Fk, i.e., (Fk)↗.
The product σ-algebra F is defined by

F,σ
{∏∏∏∞

t=0
(Θt×St) : Θt∈M, St∈Y, ∀t∈T

}
(2.14)

Obviously, Fk ⊆ F ∀k ∈ T. The corresponding stochastic basis of Markov jump
linear systems considered in the problems of optimal state estimation is defined by
the quadruple (Ωy,F , (Fk) ,Pr), where the probability measure Pr : F →[0, 1] is
such that ∀j∈M

Pr(θk+1 =j | Fk) = Pr(θk+1 =j | θk) = pθkj(k) (2.15)
where the random variable θk has the sample space Ωy as its domain, i.e., the
jump variable is formally defined here as θk : Ωy →M, such that ∀ω ∈ Ωy, with
ω,{(φk, χk) : k∈T, φk∈M, χk∈Fny}, one has that θk(ω)=φk.

The equations (2.6)–(2.10) remain unchanged. The transition probabilities there
are assumed to be time-varying arbitrarily within a polytopic domain, as formally
presented in the next section.
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2.3 Polytopic time-varying transition probabilities

In the previous chapter, we have seen in Section 1.4 that in most real cases the
transition probability matrix P (k) introduced in (2.8) cannot be computed ex-
actly and is time-varying, and that there exists a considerable number of works on
discrete-time Markov jump systems (both linear and nonlinear) with polytopic un-
certainties, which can be either time-varying or time-invariant, as was extensively
discussed in Section 1.5.

In this thesis we assume that P (k) is varying over time, with variations that are
arbitrary within a polytopic set of stochastic matrices.

In order to express this statement formally, let V∈Z+ be a number of vertices
of a convex polytope, and V be an index set of vertices of a convex polytope, i.e.,
V, {i∈Z+ : i≤ V }. Then, the set of vertices of a convex polytope of transition
probability matrices is formally defined as

VP ,
{
Pl∈RN,N : l∈V

}
(2.16)

Clearly, being a transition probability matrix, each vertex Pl satisfies (2.6)–(2.8).
These vertices are obtained from measurement on the real system or via nu-

merical reasoning, taking into account accuracy and precision of the measuring
instruments and/or numerical algorithms. They bound the possible values each
transition probability can assume.

Then, the polytopic time-inhomogeneous assumption is stated as follows.

Assumption 2.2. The time-varying transition probability matrix P (k) is poly-
topic, that is, for all k∈T, one has that

P (k) =
∑V

l=1
λl(k)Pl, λl(k) ≥ 0,

∑V

l=1
λl(k) = 1 (2.17)

where for each l ∈ V, Pl ∈ VP ⊂ VRN,N , i.e, Pl are elements of a given finite
set of transition probability matrices, which are the vertices of a convex polytope;
moreover, λl(k) are unmeasurable.

A visual representation of the concept of arbitrarily variations within a convex
hull of points is illustrated in the following Figure 2.2, where P1, P2 and P3 represent
the vertices, and P (k) shows a possible evolution in time of an element satisfying
polytopic time-varying assumption.

Assumption 2.2 plays important role also in our model of Markov jump switched
linear systems, which we present in the following Section 2.4.

2.4 Markov jump switched linear systems

Switched linear systems, where a switching signal is governed by a Markov decision
process (henceforward, MDP) instead of a Markov chain, is the subject of this last
section of Chapter 2.
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Figure 2.2: Dynamics of an element satisfying polytopic time-varying assumption

An MDP enriches the structure of a Markov chain by adding actions (which
allow a choice) and costs (that give a motivation). So, as before, there is a finite, or
countable, (index) set of states of a process, that we denote by M. Again, |M|=N .
Then, on top of these discrete states of a Markov decision process, there is a a
finite number M ∈Z+ of actions among which a decision maker (a.k.a. a discrete
controller or a supervisor) is able to chose. We denote the set of all these actions
by A. Typically, only a subset of A is available in any given state of an MDP, as
illustrated in appendix’s Section B.6. We take this into account by defining for
each state i∈M the related set Ai of actions α available in that state. We write
this statement symbolically as Ai⊆A, α∈Ai. Selecting an (available) action in any
given state of a Markov decision process entails a (non-negative) cost, which is seen
as a function g : M×A→G, where G⊆R0 is a set of immediate costs. See appendix’s
Section B.6 for an example from wireless transmission power management scenario.

A Markov decision process is still a stochastic process and should be defined
on a proper stochastic basis. As of now, we denote by sk a stochastic variable
representing a current state of a Markov decision process. Evidently, its codomain
is M. In the same way as done before for a Markov jump variable, we make the
following assumption.

Assumption 2.3. The state sk of the Markov decision process is measurable and
available for the discrete controller at each time step k∈T.

Then, once more, we denote byM⊆2M the σ-algebra of measurable events of
M, so that a pair (M,M) indicates the measurable space of sk.

Hence, a Markov jump switched linear system is a dynamical system having the
same form as (2.1), with the only notational difference being that the operational
modes of the system are determined by the stochastic variable sk, which will be
formally defined shortly.
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Specifically, a continuous state-space model of an MJSLS is the following system
of recursive equations: 

xk+1 = Askxk+Bskuk
zk = Cskxk+Dskuk,
x0 = x0, s0 = s0, p0 = p0

(2.18)

where the system’s variables and matrices are the same as in Section 2.1.
This model is used to provide a solution to a finite-horizon optimal state-

feedback control problem in noiseless setting, as will be presented in Chapter 6. For
this type of problems, we make the standard assumption that the system’s state
variables are all measurable and available to the controller. The action selected
by a decision maker should also be measurable. Then, the adopted information
pattern is similar to the pattern used in Subsection 2.2, i.e., ∀k ∈T, one has that
Ik , {sk, αk, xk}. With a slight abuse of notation, we will indicate by Ik also the
induced filtration, which will be defined immediately after an introduction of a
proper sample space, since the addition of the actions in the structure of a stochas-
tic process requires an adjustment in the sample space’s definition. Specifically, in
the rest of this section we will consider

Ωs,
∏∏∏∞

k=0
(M×A×Fnx) (2.19)

where the subscript s indicates that this sample space accounts for the collection
of random variables sk.

At this point, we have the following recursive definition of the filtration

Ik,σ
{∏∏∏k

t=0
(Θt×Υt×St)×

∏∏∏∞

τ=k+1
(M×A×Fnx) : Θt∈M,Υt∈A, St∈X ,∀t∈Tk

}
where A⊆2A is the σ-algebra of measurable events of A. Noticeably, we have that
(Ik)↗, meaning that I0⊆I1⊆I2⊆· · ·⊆Ik.

The product σ-algebra I is then written as

I,σ
{∏∏∏∞

t=0
(Θt×Υt×St) : Θt∈M, Υt∈A, St∈X , ∀t∈T

}
(2.20)

Clearly, Ik⊆I ∀k∈T.
The corresponding stochastic basis of a MJSLS represented by (2.18) is defined

by the quadruple (Ωs, I, (Ik) ,Pr), where the probability measure Pr : I →[0, 1] is
such that ∀j∈M

Pr(sk+1 =j | Ik) = Pr(sk+1 =j | sk= i, αk=α) = pαij(k) (2.21)

where the random variable sk has the sample space Ωs as its domain, and the action
chosen by discrete controller is measurable (on Ik).
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Then, the random variable representing the current operational mode of a
Markov jump switched linear system is formally defined as sk : Ωs → M, such
that ∀ω∈Ωs, with ω,{(φk, µk, χk) : k∈T, φk∈M, µk∈A, χk∈Fnx}, one has that
sk(ω)=φk.

Obviously, when considered together with immediate cost function g : M×A→G,
the stochastic process s,{sk : k∈T}, with sk : Ωs→M defined above, is a Markov
decision process. Its transition probabilities pαij≥0 are s.t.

∑N
j=1 p

α
ij(k)=1 ∀α∈Ai.

Since Ai⊆A, not all the actions may be available in an operational mode sk= i.
In other words, there may be some actions that are not available in all operational
modes. For those actions we do not have a correspondent transition probability
matrix (which by definition requires every row to have elements with nonnegative
values such that their total sum equals to 1; when an action is not available in an
operational mode, the associated transition probabilities are intuitively all equal
to 0 or not defined). As a result, when dealing with such MJSLSs, we may not
have transition probability matrices, but only a collection of transition probability
row vectors pαi•(k), each of which is associated to an operational mode sk= i where
α ∈ Ai is available. So, Assumption 2.2 is modified from the notational point of
view as follows.

Assumption 2.4. The time-varying transition probability row vector pαi•(k) is
polytopic, that is, for all k∈T, i∈M, and α∈Ai one has that

pαi•(k) =
∑Vα

l=1
λl(k)pαi•l, λl(k) ≥ 0,

∑Vα

l=1
λl(k) = 1 (2.22)

where for each l ∈ Vα, pαi•l ∈ VαP⊂ VαR1,N , i.e, pαi•l are elements of a given finite
set of transition probability row vectors, which are the vertices of a convex polytope;
moreover, λl(k) are unmeasurable.

We stress the fact that if an action is available for all operational modes, all
N associated transition probability (TP) row vectors form a transition probability
matrix related to that action.

Loosely speaking, instead of having only one polytope of transition probabil-
ity matrices, a MJSLS has several. See appendix’s Subsection B.4 for additional
thoughts on sets of matrices and convex polytopes.

In Chapter 6 we will use the presented model to solve the problem of optimal
quadratic regulation which is robust to the polytopic time-varying uncertainties
on transition probabilities between operational modes of the system, associated to
each action.

In the next chapter, instead, we will examine the problem of stability of discrete-
time polytopic time-inhomogeneous Markov jump linear systems illustrated in the
previous sections of this chapter.



Chapter 3

Stability issues

Among the requirements in any control system design problem, stability is cer-
tainly a mandatory one [12]. Various types of stability may be discussed for

the solutions of difference equations describing discrete-time dynamical systems.
For the systems without switching behavior, the most important type of stability

is that concerning the stability of solutions near to a point of equilibrium, i.e., the
stability in sense of Lyapunov. Although Markov jump linear systems seem to be a
natural extension of the class of linear dynamical systems without switching, their
subtleties are such that the standard linear theory cannot be directly applied, as
well described in the reference book on discrete-time MJLSs [12].

The notion of stability of Markov jump linear systems that parallels the ideas of
Lyapunov stability theory is so-called mean square stability (often abbreviated to
MSS). The necessary and sufficient conditions for this type of stability derived for
Markov jump linear systems with time-varying uncertain transition probabilities is
the main result of this section.

This result was first derived for the noiseless setting in [1] and presented at the
55th IEEE Conference on Decision and Control (CDC 2016) held in Las Vegas,
Nevada, USA, in December 2016. An extension considering also a bounded process
noise was obtained in [2], which was presented at the 20th World Congress of the
International Federation of Automatic Control in July 2017.

In order to render this chapter straightforward even for readers not familiar with
the mathematical stability theory, we first recall in Section 3.1 the basic concepts
of asymptotic stability for dynamical systems without switching, and mean square
stability, exponential mean square stability and stochastic stability for Markov jump
linear systems.

In Section 3.1, we also provide a motivational example showing that the con-
ditions guaranteeing the stability of MJLSs with known time-invariant transition
probabilities between the operational modes are not enough to ensure stability in
case the transition probability matrices are uncertain and time-varying, evincing
a reader that perturbations on values of transition probabilities can make a stable

27
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Markov jump linear system unstable.
Then, in Section 3.2 we present necessary and sufficient conditions for the mean

square stability of autonomous noiseless MJLSs with polytopic time-inhomogeneous
transition probabilities. These conditions are based on the notion of joint spectral
radius of a set of matrices. We then show that the presented necessary and sufficient
conditions ensure also the exponential mean square stability and stochastic stability.

In Section 3.3 we extend such results by deriving necessary and sufficient condi-
tions for robust mean square stability of a discrete-time time-inhomogeneous MJLSs
affected not only by polytopic time-inhomogeneous uncertainties on transition prob-
abilities but also by bounded disturbances. In addition, we provide an illustrative
example that shows that the presence of the bounded process noise does not change
the considerations on stability in relation to the joint spectral radius.

Finally, in Section 3.4 we introduce the definitions of mean square stabilizability
and mean square detectability, together with respective conditions to test them,
which extend the notions of stability to controlled systems, where possibly not all
the state variables may be available to the controller.

3.1 Autonomous systems and stability

In order to recollect the concept of asymptotic stability, let us consider the following
difference equations

xk+1 = f(xk) (3.1)

xk+1 = Axk (3.2)

with k∈T, xk∈Fnx , f : Fnx→Fnx , and A∈Fnx,nx .
The sequence (xk) generated according to one of the previous difference equa-

tions is called a trajectory of the dynamical system. It describes the evolution of a
dynamical system, as time passes by.

The second equation is a particular case of the first one and is of greater interest
to us, since it represents a particular case of a Markov jump linear system, when
there is only one operational mode. Equation (3.2) defines a so-called discrete-time
linear time-invariant system. Notably, this system is also autonomous, since there
is no control input, and noiseless, because there is no process noise representing the
discrepancies between the model and the real process, due to unmodeled dynamics
or disturbances, for instance. For more information on dynamical systems with
only one operational mode, an interested reader may refer for eaxample to [91–93].

A point xe∈Fnx is called an equilibrium point of a dynamical system described
by (3.1) if f(xe) = xe. Notably, xe = 0 is an equilibrium point of a dynamical
system represented by (3.2). As usual, we denote by R+ the set of positive real
numbers, i.e., {i∈R : i>0}, by ‖·‖ any norm in Fnx , and by x0 the initial state of
the system, that is, x0 =x0. Then, Lyapunov stability of a dynamical system as in
(3.1) or in (3.2) is defined as follows.
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Definition 3.1. An equilibrium point xe is said to be stable in the sense of
Lyapunov if for each ε ∈ R+ there exists δε ∈ R+ such that ‖xk−xe‖ ≤ ε for all
k∈T whenever ‖x0−xe‖≤δε.

A stronger version of Lyapunov stability is the (global) asymptotic stability,
which is formally defined as follows.

Definition 3.2. An equilibrium point xe is said to be asymptotically stable if
it is stable in the sense of Lyapunov and there exists δ ∈ R+ such that whenever
‖x0−xe‖≤δ we have that xk→xe as k increases. It is globally asymptotically
stable if it is asymptotically stable and xk→xe as k increases for any x0 in the
state space.

The definition above simply states that the equilibrium point is stable if, given
any spherical region surrounding the equilibrium point, we can find another spher-
ical region surrounding the equilibrium point such that trajectories starting inside
this second region do not leave the first one. Besides, if the trajectories also converge
to this equilibrium point, then it is asymptotically stable [12].

A classical result in Lyapunov stability theory states that xe=0 is the only glob-
ally asymptotically stable equilibrium point for a discrete-time linear time-invariant
system (3.2) and there exists a globally asymptotically stable equilibrium point for
the system (3.2) if and only if ρ(A)< 1, where ρ(·) denotes a spectral radius of a
square matrix. A proof of this statement can be found for instance in [91]. For a
definition and some properties of a spectral radius, see appendix’s Section B.4.

The above result was extended to Markov jump linear systems through the
notion of mean square stability, as presented in book written by Costa et al. [12].

In the aforementioned book, the authors first of all show on a simple numerical
example [12, pp. 4–6] that in case of stochastic switching between two operational
modes, one of which is stable and other not, some trajectories may be unstable while
others tend to zero as k increases. They also show that, depending on transition
probabilities between operational modes, a system having all operational modes
stable, may be unstable, and that a system with unstable operational modes may be
stable [12, pp. 37–41], underlining a connection between the mean square stability
(introduced next) and the probability of visits to the unstable modes.

Let us consider an autonomous discrete-time Markov jump linear system de-
scribed by the following state-space model defined on a stochastic basis introduced
in Subsection 2.2, i.e., (Ωx,G, (Gk) ,Pr):{

xk+1 = Aθkxk+Hθkvk,
x0 = x0, θ0 = ϑ0

(3.3)

where, as presented in Section 2.1, xk is a column vector of nx either real or complex
state variables, vk∈Fnv is a vector of process noise variables, A,(Ai)Ni=1∈NFnx,nx

is a sequence of state matrices, and H, (Hi)Ni=1∈NFnx,nv is a sequence of process
noise matrices, each of which is associated to an operational mode of the (switching)
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system; the values of x0∈Hnx
0 and θ0∈Θ0, i.e., x0∈Fnx and ϑ0∈M, respectively,

represent the initial conditions.
As in the previous chapter, let us denote by E(·) the expected value of a random

variable, and by ‖·‖ either any vector norm or any matrix norm. See appendix’s
Sections B.3 and B.4 for additional details on equivalent norms. Then, the mean
square stability of a system (3.3) is defined as follows [12, p. 36–37].

Definition 3.3. A Markov jump linear system (3.3) is mean square stable if
for any initial condition x0∈Hnx

0 and θ0∈Θ0 there exist xe∈Fnx and Qe∈Fnx,nx
+

(independent from initial conditions x0 and θ0), such that

lim
k→∞

‖E(xk)− xe‖ = 0, (3.4a)

lim
k→∞

‖E(xkx∗k)−Qe‖ = 0 (3.4b)

Remark 3.1. It is worth mentioning [12, p. 37, Remark 3.10] that in noiseless case,
i.e., when vk=0 in (3.3), the conditions (3.4) defining mean square stability become

lim
k→∞

E(xk) = 0, lim
k→∞

E(xkx∗k) = 0 (3.5)

There exist also other forms of stability for Markov jump linear systems without
process noise, notably exponential mean square stability (as of now, EMSS) and
stochastic stability (sometimes abbreviated to SS), that we define as follows.

Definition 3.4. An MJLS (3.3) is exponentially mean square stable if for
some reals β≥ 1, 0<ζ < 1, we have for all initial conditions x0 ∈Hnx

0 and θ0 ∈Θ0
that, for every k∈T, if vk=0, then

E
(
‖xk‖2

)
≤ βζk ‖x0‖22 (3.6)

We observe that ‖·‖2 denotes the Euclidean norm, also known as L2-norm or
simply 2-norm. See appendix’s Section B.3 for additional details.

Definition 3.5. A Markov jump linear system (3.3) is stochastically stable if
for all initial conditions x0 ∈ Hnx

0 and θ0 ∈ Θ0, we have that, if vk = 0 for every
k∈T, then ∑∞

k=0
E
(
‖xk‖2

)
<∞ (3.7)

In time-homogeneous case, i.e., when the transition probability matrix defined
by (2.6)–(2.8), is such that P (k) = P for all k ∈ T, there is a condition based on
a value of a spectral radius of a matrix associated to the second moment of xk
that is necessary and sufficient for the mean square stability of the system (3.3);
furthermore, in noiseless setting, MSS, EMSS and SS are equivalent [12, pp. 36–44].
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Specifically, the matrix related to the second moment of xk that we have mentioned
above is

Λ ,
(
PT ⊗ In2

x

)(⊕N

i=1

(
Āi ⊗Ai

))
(3.8)

where ⊗ denotes the Kronecker product, In2
x
is the identity matrix of size n2

x,
and the direct sum ⊕ of the manipulated elements of a sequence of state matrices
A produces a block diagonal matrix, having the matrices

(
Āi⊗Ai

)
on the main

diagonal blocks. See appendix’s Sections B.4 and B.4 for additional information.
The necessary and sufficient condition for the mean square stability of time-

homogeneous Markov jump linear systems we have hinted at before is

ρ(Λ) < 1 (3.9)

This condition for mean square stability does not hold in time-inhomogeneous
case, as we show in the following example.

Motivational example
To motivate the necessity of studying the characteristics of Markov jump linear
systems with dynamic perturbations on values in transition probability matrix, let
us consider an autonomous noiseless system satisfying Assumption 2.2. In the fol-
lowing example we show that having the spectral radius smaller than one for each
matrix Λ associated to the second moment of xk (computed for each vertex of poly-
tope bounding the variations in transition probabilities between operational modes)
is not enough to ensure the (mean square) stability of the time-inhomogeneous sys-
tem.

Let us consider a noiseless autonomous MJLS with N = 3 operational modes,
where the state matrices associated with the operational modes are

A1 =
[
1 0
0 1.2

]
, A2 =

[
1.13 0
0.16 0.48

]
, A3 =

[
0.3 0.13
0.16 1.14

]
and the time-varying transition probability matrix P (k) is uncertain and belongs
to a polytope with V =2 vertices

P1 =

 0 0.35 0.65
0.6 0.4 0
0.4 0.6 0

 , P2 =

0.25 0.75 0
0 0.6 0.4
0 0.4 0.6


Then, any transition probability matrix within a polytope is represented by

P (k) = λ(k)P1 + (1− λ(k))P2, 0 ≤ λ(k) ≤ 1

Let us consider, for instance, also the matrix

P ′ = 0.5 P1 + 0.5 P2 =

0.125 0.55 0.325
0.3 0.5 0.2
0.2 0.5 0.3
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The spectral radii ρ of the matrices Λ are:

ρ(Λ1) = 0.901601, ρ(Λ2) = 0.905686, ρ(Λ′) = 0.937965

Thus, the time-homogeneous Markov jump linear systems with transition proba-
bility matrices P1, P2 and P ′ are mean square stable.

In order to present this result visually, we report one possible dynamical behav-
ior of the system, obtained for x0 = [100; 85] and the initial probability distribution
p0 = [0.33, 0.34, 0.33]T .

Figure 3.1 shows us a trajectory of the system state vector when the time-
homogeneous transition probability matrix is P1.

Figure 3.1: One of the possible trajectories of xk when TPM is P1

Repeating the trial under the same conditions, except that the considered tran-
sition probability matrix being P2, one obtains a system’s state trajectory presented
in Figure 3.2.

However, repeating the experiment again under the same conditions, except
that the transition probability matrix being allowed to switch arbitrarily between
P1 and P2 at each time step, brings to light a trajectory shown in Figure 3.3. The
considered Markov jump linear system is clearly unstable.

In Section 3.2 we present a condition, proved to be necessary and sufficient,
for the mean square stability of polytopic time-inhomogeneous Markov jump linear
systems. The condition is based on the generalization of the notion of spectral
radius to sets of matrices. This generalization is known as joint spectral radius (or
JSR). Our condition requires the JSR, denoted by ρ̂(·), of all matrices Λl, l ∈ V,
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Figure 3.2: One of the possible trajectories of xk when TPM is P2

Figure 3.3: Trajectory of xk when TPM is switching between P1 and P2
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associated to the second moment of state vector xk, to be smaller than one. For
the set of matrices in example we have instead that

ρ̂({Λl : l∈V}) = ρ̂({Λ1,Λ2}) ≥ 1.024442

The value of the joint spectral radius has been computed via JSR toolbox [94].

Standard notational conventions
We have seen in Section 3.1 that different definitions of stability of MJLSs are
all based on some properties of the system’s state vector xk. However, it is easy
to see from the state-space model of the system (3.3) that the stochastic process
{xk : k∈T} considered alone does not satisfy the Markov property (B.82). The
stochastic process that satisfies the aforementioned property is instead a joint pro-
cess {(θk, xk) : k∈T}. Thus, it is a common practice in analysis of Markov jump
linear systems to use the indicator function (B.1) defined on a relevant σ-algebra
(i.e., G in the considered case) to take advantage of the Markov property also for
system’s state xk. The values i ∈M of the jump variable θk are all measurable
elementary events on G. As a consequence, the indicator function 1{θk=i} is such
that, for any ω∈Ωx, one has

1{θk=i}(ω) =
{

1 if θk(ω) = i

0 otherwise
(3.10)

The indicator function 1{θk=i} allows us to obtain recursive difference equations
for the first and second moments of the system’s state, which are fundamental in
deriving our result on stability.

Let us denote by Fn,n0 a set of all positive semi-definite matrices of order n with
entries in F, and by NFn,n0 the set of all N -sequences of square matrices in Fn,n0 .

Then, following the standard workflow for Markov jump linear systems [12, p.
31], we use the subsequent notation, where k∈T and i∈M.

qi(k) , E
(
xk1{θk=i}

)
∈ Fnx (3.11)

q(k) ,

q1(k)
...

qN (k)

 ∈ FNnx

ri(k) , E
(
vk1{θk=i}

)
∈ Fnv (3.12)

r(k) ,

 r1(k)
...

rN (k)

 ∈ FNnv

Qi(k) , E
(
xkx∗k1{θk=i}

)
∈ Fnx,nx

0 (3.13)
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Q(k) , (Qi(k))Ni=1 ∈ NFnx,nx
0 (3.14)

Ri(k) , E
(
vkv∗k1{θk=i}

)
∈ Fnv,nv

0 (3.15)

R(k) , (Ri(k))Ni=1 ∈ NFnv,nv
0 (3.16)

HR(k)H∗ , (HiRi(k)H∗i )Ni=1 ∈ NFnx,nx
0 (3.17)

Wi(k) , E
(
xkv∗k1{θk=i}

)
∈ Fnv,nx , (3.18)

W(k) , (Wi(k)) ∈ NFnv,nx (3.19)

AW(k)H∗ , (AiWi(k)H∗i ) ∈ NFnx,nx
0 (3.20)

This permits us to define the expected value of xk as

E(xk) =
∑N

i=1
qi(k) ∈ Fnx (3.21)

and the second moment of xk as

E(xkx∗k) =
∑N

i=1
Qi(k) ∈ Fnx,nx

0 (3.22)

The expressions of the first and second moment of xk above can be easily derived
from the definition of the expected value (B.78) and from (3.10).

This notation is used throughout the rest of the chapter to derive the necessary
and sufficient conditions for mean square stability of polytopic time-inhomogeneous
MJLSs as in (3.3).

3.2 Stability conditions in noiseless setting

The results of this section are based on a noiseless version of (3.3), i.e., when vk=0
for every k∈T. They are based on our first work on MJLSs [1].

Let us consider a noiseless autonomous discrete-time Markov jump linear system
defined on a stochastic basis (Ωx,G, (Gk) ,Pr) and described by the following system
of difference equations {

xk+1 = Aθkxk,
x0 = x0, θ0 = ϑ0

(3.23)

where, as before, xk ∈ Fnx is a system’s state vector, A , (Ai)Ni=1 ∈ NFnx,nx is a
sequence of state matrices, each of which is associated to an operational mode;
while x0∈Hnx

0 and θ0∈Θ0 are initial conditions.
Let the transition probability matrix P (k) = [pij(k)] of the system (3.23) be

polytopic time-inhomogeneous, i.e., satisfying Assumption 2.2. Then, we can easily
see that the recursive equations for qi(k) and Qi(k) defined by (3.11) and by (3.13),
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respectively, have the same structure as their counterpart in the time-homogeneous
case with known probability matrix [12, p. 32]. The extension to this more general
time-varying case is straightforward, but the formal proof requires an additional
lemma on inequality between trace of any positive semi-definite matrix and any
matrix norm.

Lemma 3.1. For any Q∈Fn,n0 we have the following inequality

tr(Q) ≤ n ‖Q‖ (3.24)

Proof. The proof is based on the relationship between the trace, eigenvalues and
the spectral radius ρ(Q) of positive semi-definite matrices. Since Q is positive semi-
definite, all its eigenvalues are nonnegative real numbers. Thus, from the definition
(B.2) of the absolute value for real numbers, the property (B.39) of the trace of
being the sum of all the eigenvalues of a square matrix, and definition (B.40) of the
spectral radius as the largest absolute value of the eigenvalues, we have that

tr(Q)≤nρ(Q)

Then, let v∈ Fn be the eigenvector associated to the maximal eigenvalue νmax of
Q, which for both real and complex-valued positive semi-definite matrices equals
to ρ(Q). By definition of the eigenvalue provided in (B.36), we have that

Qv=νmaxv

By absolute homogeneity (B.4) of any vector norm and triangle inequality (B.43)
of any matrix norm, we have for any νmax∈R0 that

νmax ‖v‖ = |νmax| ‖v‖ = ‖νmaxv‖ = ‖Qv‖ ≤ ‖Q‖ ‖v‖

Thus, ρ(Q) = |νmax| ≤ ‖Q‖. Together with the first equation in the proof, this
implies the thesis, and the lemma is proved.

Now we can present the aforementioned recursive equations for qi(k) and Qi(k).

Proposition 3.2. Consider the system (3.23). For all k∈T, j∈M, we have that

qj(k + 1) =
∑N

i=1
pij(k)Aiqi(k) (3.25)

Qj(k + 1) =
∑N

i=1
pij(k)AiQi(k)A∗i (3.26)

E
(
‖xk‖22

)
= E

(∥∥∥∥(∏k−1

i=0
A∗θ(i)

)∗
x0

∥∥∥∥2

2

)
≤ nx ‖Q(k)‖1 (3.27)
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Proof. Regarding the first statement, we have that

qj(k + 1) = E
(
xk+11{θk+1=j}

)
by (3.11)

= E
(
Aθkxk1{θk+1=j}

)
by (3.23)

=
∑N

i=1
E
(
Aixk1{θk=i}1{θk+1=j}

)
by (B.78) and (3.10)

=
∑N

i=1
AiE

(
xk1{θk=i}1{θk+1=j}

)
by linearity of expected value

=
∑N

i=1
AiE

(
xk1{θk=i}Pr{θk+1 = j | Gk}

)
by (2.5) and (3.10)

=
∑N

i=1
AiE

(
xk1{θk=i}

)
pij(k) by (B.78) and (2.6)

=
∑N

i=1
Aiqi(k)pij(k) by (3.11)

which proves the first result.
Regarding the second statement, we have from the definition (3.13) of the matrix

Qi(k) and exactly the same considerations made before, that

Qj(k + 1) =
∑N

i=1
E
(
Aixk (Aixk)∗ 1{θk=i}1{θk+1=j}

)
=
∑N

i=1
AiQi(k)A∗i pij(k)

By commutative property of scalar multiplication on either real or complex linear
spaces, this implies the thesis.

For what concerns the third statement, the equality, stated in the compact form
(B.26) of the matrix product in reverse order, comes from the repeated applications
of the recursive equation (3.23) describing the evolution of the system’s state xk,
while the inequality is derived as follows.

E
(
‖xk‖22

)
=
∑N

i=1
E
(
‖xk‖22 1{θk=i}

)
from (B.78) and (3.10)

=
∑N

i=1
E
(
tr(xkx∗k) 1{θk=i}

)
from (B.33) and (B.10)

=
∑N

i=1
tr
(
E
(
xkx∗k1{θk=i}

))
from the linearity of tr(·) and E(·)

=
∑N

i=1
tr(Qi(k)) from (3.13)

= tr
(∑N

i=1
Qi(k)

)
by linearity of the trace

≤ nx

∥∥∥∥∑N

i=1
Qi(k)

∥∥∥∥ from (3.24)

≤ nx
∑N

i=1
‖Qi(k)‖ by triangle inequality (B.43)

= nx ‖Q(k)‖1 by definition of 1-norm in (B.54)

The proposition is proved.
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Similarly to the time-homogeneous case [12, pp. 33-35], also here, via application
of Proposition 3.2 describing through (3.26) the dynamics of the matrices Qi(k),
the definition (B.55) of the linear operator vec2(·), and the related definition (B.29)
of the linear mapping vec(·), the properties (B.30) and (B.31) of the Kronecker
product (described in appendix’s Subsection B.4) to Q(k), defined by (3.14), we
have that

vec2(Q(k + 1)) = Λ(k)vec2(Q(k)) (3.28)
where Λ(k) is a time-varying version of (3.8), i.e.,

Λ(k) ,
(
PT (k)⊗ In2

x

)(⊕N

i=1

(
Āi⊗Ai

))
(3.29)

Proposition 3.3. The matrix Λ(k) is polytopic, i.e., ∀k∈T

Λ(k) =
V∑
l=1

λl(k)Λl, λl(k) ≥ 0,
V∑
l=1

λl(k) = 1 (3.30a)

Λl ,
(
PTl ⊗ In2

x

)(⊕N

i=1

(
Āi⊗Ai

))
(3.30b)

where for each l∈V, Pl ∈ VP⊂ VRN,N , i.e, Pl are elements of a given finite set of
transition probability matrices, which are the vertices of a convex polytope.

Proof. The result follows from Assumption 2.2 on time-varying unmeasurable tran-
sition probability matrix P (k) of being polytopic, by direct application of the related
equation (2.17) and (bi-)linearity (B.31) of the Kronecker product, to the definition
(3.29) of the matrix Λ(k).

Similarly to VP defined by (2.16), let us indicate by VΛ the set of vertices of the
convex polytope of the matrices Λ(k) related to the second moment of xk through
Q(k). Formally, we write that

VΛ ,
{

Λl∈FNn
2
x,Nn

2
x : l∈V

}
(3.31)

Recalling the definition (B.62) of a convex hull, we can write that for each k∈T

Λ(k) ∈ convVΛ (3.32)

It worth noting that the set of possible values of Λ(k) is bounded, but uncount-
able. Also, by Assumption 2.2, the values of Λ(k) are unmeasurable.

Anyway, the repeated applications of (3.29) gives us the following recursion:

vec2(Q(k)) =
(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0)) (3.33)

The previous equation will be used in the proof of our first main result, presented
in the next subsection.
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Conditions for the mean square stability
It is well known, that the maximal rate of growth among all products of matrices
from a bounded set is given by its joint spectral radius, which is the generalization
of the notion of spectral radius to sets of matrices. See appendix’s Subsection B.4
for the definition and some relevant properties of the joint spectral radius, that will
be used in the following theorem, which presents necessary and sufficient conditions
for the mean square stability of polytopic time-inhomogeneous MJLSs.

Theorem 3.4. The discrete-time Markov jump linear system (3.23) with unknown
and time-varying transition probability matrix P (k)∈convVP is mean square stable
if and only if ρ̂(VΛ)<1.

Proof. We first prove the necessity of the presented condition for the mean square
stability, i.e., MSS ⇒ ρ̂(VΛ)<1.

By hypothesis (3.5), for any x0∈Hnx
0 and θ0∈Θ0,

lim
k→∞

E(xkx∗k) = 0

First of all, we observe that the elements of the main diagonal of the positive
semi-definite matrix xkx∗k are all real and nonnegative.

Formally, if we write xk as a column vector

xk =


x1
x2
...
xnx

 ∈ Fnx,1

where we do not state explicitly the time-dependence of the values only for the
sake of conciseness, then, by the definition of the conjugate transposition and the
matrix multiplication, the i-th element of the main diagonal of xkx∗k is xix̄i, which
has always a nonnegative real value, as reminded in appendix’s Subsection B.2.

In order to be able to recall this fact in what follows, we write that

(xix̄i)nx
i=1 ∈ Rnx

+ (3.34)

where Rnx
+ indicates an nx-dimensional linear space, with entries in R+.

From the definition (3.22) of the second moment of xk and the definition (3.13)
of Qi(k), we have that

lim
k→∞

∑N

i=1
Qi(k) = 0

It may be useful to write the same expression explicitly as

lim
k→∞

∑N

i=1
E
(
xkx∗k1{θk=i}

)
= 0
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Since limits of sequences behave well with respect to the usual arithmetic oper-
ations, we have that ∑N

i=1
lim
k→∞

E
(
xkx∗k1{θk=i}

)
= 0

From the definition (3.10) of the indicator function in a set of operational modes
M, considered together with (3.34), one has that, for each i∈M

lim
k→∞

E
(
xkx∗k1{θk=i}

)
= lim
k→∞

Qi(k) = 0

Thus, from the definition (3.14) of Q(k) follows that

lim
k→∞

Q(k) = 0 (3.35)

As explained in appendix’s Subsection B.4, the linear mapping vec2(·) is uniform
homeomorphic. As a consequence, the convergent behavior of Q(k) is preserved by
vec2(Q(k)), i.e.,

lim
k→∞

vec2(Q(k)) = 0

Applying the expression (3.33) for the recursion of vec2(Q(k)), we obtain that

lim
k→∞

(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0)) = 0 (3.36)

From Proposition 3.3, for each k∈T

Λ(k) ∈ convVΛ

Thus, from the proposition on the convergence of matrix products, reported in
appendix’s Subsection B.4 as Proposition B.2, we have that (3.36) holds for any
Q(0) if and only if ρ̂(convVΛ)<1.

Thus, from the proposition on the value of the joint spectral radius of a convex
hull of a set of matrices, stated in appendix’s Subsection B.4 as Proposition B.1,
follows the thesis.

Now, let us prove that the presented condition is indeed sufficient, by showing
that the mean square stability of system (3.23) is implied by ρ̂(VΛ) < 1.

As the definition of mean square stability (3.5) provides two requirements, one
for the expected value, and other for the second moment of the system’s state xk,
for k approaching infinity, the proof of sufficiency is divided in two parts.

The first part of the proof follows the inverse pattern of the proof of the necessity.
We start with the expression (3.33) for the recursion of vec2(Q(k)), i.e.,

vec2(Q(k)) =
(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0))

By its definition, provided by (3.14) and (3.13), Q(0) accounts for all possible
initial operational modes θ0 ∈ M; it depends only on the initial state x0 of the
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system, and the initial probability distribution p0 of all the operational modes.
Thus, there always exists a Q(0) ∈ NFnx,nx

0 for any initial condition, represented
by the values of x0∈Hnx

0 and θ0∈Θ0. Besides, the matrix Q(0) accounts also for
any initial probability distribution p0. Since, by Proposition 3.3, Λ(k)∈convVΛ for
each k∈T, we have that

ρ̂(VΛ) < 1⇒ lim
k→∞

E(xkx∗k) = 0, ∀x0∈Hnx
0 , θ0∈Θ0

by Propositions B.1 and B.2, uniform homeomorphism between the spaces NFnx,nx
0

and FNn
2
x

0 through the mapping vec2(·), together with the application of the defi-
nitions of matrices Q(k), Qi(k) and of the second moment of xk, i.e., (3.14), (3.13)
and (3.22), respectively.

To complete the proof, in this second part we need to show that

ρ̂(VΛ) < 1⇒ lim
k→∞

E(xk) = 0, ∀x0∈Hnx
0 , θ0∈Θ0

From the first part of the proof, we already have (3.35), i.e., that the matrix
Q(k) converges to the zero matrix as k∈T approaches infinity.

Then, the equation (3.27) from Proposition 3.2 tells us that the value of the
expected value of ‖xk‖22 is bounded by ‖Q(k)‖1.

Thus, we obtain that
lim
k→∞

E
(
‖xk‖22

)
= 0

Since limits of sequences behave well with respect to the usual arithmetic opera-
tions, including multiplication, and thus, exponentiation, we have that

lim
k→∞

E(‖xk‖2) = 0

which implies the thesis and concludes the proof.

The presented condition is very useful from theoretical point of view, but it is
computationally demanding, as will be shown in the next subsection. For additional
details on the topic of computational complexity in general and NP-hardness in
particular, see for instance [95].

Computational complexity of the stability analysis
While it is well known that the stability analysis problem for general switching
systems (that is, deciding whether the joint spectral radius is smaller than 1) is
NP-hard [86], we prove in the following theorem that it is NP-hard even in our
particular model.

Theorem 3.5. Given a discrete-time Markov jump linear system (3.23) with un-
known time-varying transition probability matrix P (k) ∈ convVP, unless P =NP ,
there is no polynomial-time algorithm that decides whether it is mean square stable.
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Proof. Let us denote by Q the set of all rational numbers, and by Q0 the set of
all nonnegative rationals, i.e., {i∈Q : i≥0}. Let us indicate by Qn,n the set of all
square matrices of order n with entries in Q.

Our proof works by reduction from the matrix semigroup stability, which is well
known to be NP-hard [88, Theorem 2.4 and Theorem 2.6]. In this problem, one is
given a set of two matrices SM ={M,M′}⊂Qn,n such that M=[mij ], M′=[m′ij ], and
for any i, j∈Z+, mij ∈Q0 and m′ij ∈Q0, i.e., the entries of the two square matrices
of order n are all nonnegative rational numbers. Then, one is asked whether the
product of length k of any sequence of matrices M,M′ converges to the zero matrix
when k→∞.

Let us consider a particular instance of the matrix semigroup stability problem.
With a slight abuse of notation, this instance of the problem is also indicated by

SM ={M=[mij ], M′=[m′ij ] : ∀i, j, n∈Z+, i≤n, j≤n, mij ∈Q0, m
′
ij ∈Q0}

We will build a discrete-time autonomous noiseless MJLS (3.23) with a set of
(scalar) state matrices {ai∈R0 : i, n,N ∈Z+, N=n+1, i≤N}, with unknown and
time-varying transition probability matrices P (k)∈ conv VP, VP= {P, P ′}⊂RN,N ,
where P =[pij ] and P ′=[p′ij ] are stochastic matrices (i.e., for any i, j∈Z+, pij ∈R0,
p′ij ∈ R0, and such that any row of these two matrices is a distribution, thus it
satisfies (B.84)) and prove that the constructed Markov jump linear system (3.23)
is mean square stable if and only if the set SM is stable.

By (3.30) it follows that

Λ = PT
(⊕N

i=1
a2
i

)
, Λ′ = (P ′)T

(⊕N

i=1
a2
i

)
Explicitly,

Λ =


p11 · · · pn1 pN1
...

. . .
...

...
p1n · · · pnn pNn
p1N · · · pnN pNN



a2

1 · · · 0 0
...

. . .
...

...
0 · · · a2

n 0
0 · · · 0 a2

N


Which shows us that

Λ =


p11a

2
1 · · · pn1a

2
n pN1a

2
N

...
. . .

...
...

p1na
2
1 · · · pnna

2
n pNna

2
N

p1Na
2
1 · · · pnNa

2
r pNNa

2
N


Similarly,

Λ′ =


p′11a

2
1 · · · p′n1a

2
r p′N1a

2
N

...
. . .

...
...

p′1na
2
1 · · · p′nna

2
r p′Nna

2
N

p′1Na
2
1 · · · p′nNa

2
r p′NNa

2
N
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Our construction is as follows.
Assign arbitrarily for each j∈Z+, s.t. j≤n,

a2
j ∈ Q0 : a2

j ≥ nmax
i
{mij ,m

′
ij : i∈Z+, i≤n}

Assign for all i, j∈Z+ such that i≤n, j≤n

pij ,
mji

a2
i

, p′ij ,
m′ji
a2
i

Obviously, pij , p′ij ∈Q0, pij≤
1
n
, and p′ij≤

1
n
.

Then, assign for every i∈Z+ s.t. i≤N

piN , 1−
∑n

j=1
pij , p′iN , 1−

∑n

j=1
p′ij

Clearly, by construction piN , p′iN ∈Q0, and piN ≤1, p′iN ≤1.
As a next step, assign

aN ,0

Finally, for each j∈Z+, j≤N assign

pNj=p′Nj ,
1
N

As a consequence of the above assignments, it follows that P , P ′ are stochastic
matrices and that

Λ =
[
M 0
R 0

]
, Λ′ =

[
M′ 0
R′ 0

]
with R,R′ ∈ Q1,n, having nonegative elements. By Theorem 3.4, (3.23) is mean
square stable if and only if the joint spectral radius of the set {Λ,Λ′} is smaller
than 1. From this, it is straightforward to see that (3.23) is mean square stable if
and only if SM is stable. This concludes the proof.

Remark 3.2. It is not known (to the best of our knowledge) whether the matrix
semigroup stability problem is Turing decidable (say, for matrices with rational
nonnegative entries). Thus, the above proof does not allow us to conclude that
mean square stability is undecidable for Markov jump linear systems with polytopic
unknown and time-varying transition probability matrices. This is why we only
claim that the stability problem is NP-hard.

In the next subsection we present a theorem that links mean square stability to
exponential mean square stability and to stochastic stability.
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Stability equivalence
Our last but not least important result on stability of autonomous noiseless Markov
jump linear systems as in (3.23) having polytopic time-inhomogeneous transition
probabilities is presented in the following theorem.

Theorem 3.6. The following assertions are equivalent.

1. The system (3.23) is mean square stable (MSS);
2. The system (3.23) is exponentially mean square stable (EMSS);
3. The system (3.23) is stochastically stable (SS).

As explained in appendix’s Subsections B.3, B.4 and B.4, we are working on
a finite-dimensional linear spaces, for which all norms are equivalent from a topo-
logical point of view, as they induce the same topology. Thus, in the following
proof we will make use of the Euclidean (B.10) and the grid (B.11) norms for vec-
tors, `1-norm (B.49) and Frobenius norm (B.48) for matrices, and 1-norm (B.54)
for sequences of matrices. The proof shown in this text is an extended version of
the proof presented at the 55th IEEE Conference on Decision and Control [1]. It
states explicitly all the norms we apply in different steps. It slightly differs from the
proof introduced in the conference article [1] in that the proof we describing here
uses `1-norm in conjunction with Frobenius norm. This permits us to simplify the
presentation and improve the formal rigor without going into presentation of the
operations on the matrices at the level of elements. We invite an interested reader
to see [96, Section 5.6, pp. 340–370] for a detailed presentation of the topic of ma-
trix norms, especially as a reference for the exact constants used in the inequalities
(B.9) involving the equivalent norms.

Proof. It is trivially verified that the second assertion in the statement of the the-
orem implies the third one, i.e., EMSS ⇒ SS. The result follows directly from the
definitions of exponential mean square stability (3.6) and stochastic stability (3.7).

Thus, let us show that the third statement implies the first, that is, SS⇒ MSS.
We have already seen in the proof of (3.27) in Proposition 3.2 that from the

definition of the Euclidean norm for vectors (B.10) and the definition of trace (B.33)
as a linear mapping (together with the definition of the matrix product (B.22) and
linearity of the expected value described by (B.78)), one obtains that

E
(
‖xk‖22

)
= E(tr(xkx∗k)) = tr(E(xkx∗k)) = E(x∗kxk) ≥ 0 (3.37)

In appendix’s Subsection B.3 it is explained that the absolute convergence of a series
in a normed linear space implies the convergence of a series in the same space, and
thus (B.7). So, from the definition of the stochastic stability (3.7) and (3.37), one
has that, for all initial conditions x0∈Hnx

0 and θ0∈Θ0

lim
k→∞

tr(E(xkx∗k)) = lim
k→∞

E(x∗kxk) = 0
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As a consequence (since xkx∗k defines a positive semi-definite matrix, for which,
by [96, Corollary 7.1.5, p. 430], tr(xkx∗k)=0 if and only if xkx∗k=0), this implies

lim
k→∞

E(xkx∗k) = 0

We have already seen in the proof of the sufficiency of Theorem 3.4 that this last
statement implies mean square stability of the system (3.23). Hence, this part of
the proof is concluded.

Moreover, as a result, we have also that EMSS ⇒ MSS.
Now, let us show that the opposite is true as well, that is, MSS ⇒ EMSS.
From Theorem 3.4 we know that if the system (3.23) is mean square stable,

then ρ̂(VΛ)<1. Since from the definition of the joint spectral radius

lim
k→∞

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1
k

≤ ρ̂(VΛ)

by the radical test for infinite series (a.k.a., Cauchy root test) we state that∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥ < ζk, ∀k≥k′, ∀ζ∈R+ : ζ∈(ρ̂(VΛ), 1)

for some integer k′ ≥ 0. With

β′ = ζ−k
′

sup
P∈Pj(VΛ), 0≤j≤k′

‖P‖, β′ ≥ 1

where Pj(VΛ) indicates the set of all possible products of length j whose factors
are elements of VΛ, as formally defined by (B.63). So, we obtain that∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥ ≤ β′ζk, ∀k∈T (3.38)

Now, in the proof of (3.27) in Proposition 3.2 we have seen that

E
(
‖xk‖22

)
≤ nx

∑N

i=1
‖Qi(k)‖ (3.39)

To proceed with our proof, we use the `1-norm (B.49), denoted by ‖·‖1, as the
particular norm for Qi(k), which we are going to examine next.

Following the notation presented in appendix’s Subsection B.4, we indicate by

Λ[(i−1)n2
x+1,in2

x]•

a matrix obtained by taking nx consecutive rows (starting from the ((i−1)n2
x+1)-th

row, with i∈Z+, i≤N) of Λ.
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From the recursion (3.33) for Q(k), by using the linear mapping vec2(·) de-
scribed in (B.30), the definitions of the `1-norm (B.49), the matrix product (B.22),
the sub-multiplicative property (B.43), and triangle inequality (B.43), we have that

‖Qi(k)‖1 = ‖vec(Qi(k))‖1 =

∥∥∥∥∥
(∏k−1

t=0
Λ∗(t)

)∗
[(i−1)n2

x+1,in2
x]•

vec2(Q(0))

∥∥∥∥∥
1

≤

∥∥∥∥∥
(∏k−1

t=0
Λ∗(t)

)∗
[(i−1)n2

x+1,in2
x]•

∥∥∥∥∥
1

∥∥vec2(Q(0))
∥∥

1

≤
∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1

∥∥vec2(Q(0))
∥∥

1 (3.40)

where the last inequality is justified by the fact that the matrix norm of a submatrix
is always less than or equal to a norm of the whole matrix.

Since (3.40) is valid for each i∈M, we rewrite (3.39) as

E
(
‖xk‖22

)
≤ nxN

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1

∥∥vec2(Q(0))
∥∥

1 (3.41)

From the definition (B.49) of the `1-norm, it is trivial to verify that∥∥vec2(Q(0))
∥∥

1 =
∑N

i=1
‖vec(Qi(0))‖1 =

∑N

i=1
‖Qi(0)‖1 (3.42)

At this point, we recall that the `1-norm is related to the Frobenius norm by the
inequality (B.50), i.e.,

‖Qi(0)‖1 ≤ nx ‖Qi(0)‖F (3.43)
Since by its definition (3.13), Qi(0)∈Fnx,nx for each i∈M, we apply the property
(B.53) of the trace of a positive semi-definite matrix, obtaining that

‖Qi(0)‖F ≤ tr(Qi(0)) (3.44)

After combining (3.41) with (3.42), (3.43), and (3.44), we obtain that

E
(
‖xk‖22

)
≤ n2

xN

∥∥∥∥(∏k−1

t=0
Λ∗(t)

)∗∥∥∥∥
1

∑N

i=1
tr(Qi(0)) (3.45)

Within the proof of (3.27) in Proposition 3.2, we have seen that (with k=0)∑N

i=1
tr(Qi(0)) = E

(
‖x0‖22

)
= ‖x0‖22 (3.46)

Then, by putting together (3.45), (3.46), and (3.38), we obtain

E
(
‖xk‖22

)
≤ n2

xNβ
′ζk ‖x0‖22 = βζk ‖x0‖22

This proves the assertion that mean square stability implies exponential mean
square stability also for the autonomous noiseless Markov jump linear systems (3.23)
with time-varying uncertain transition probabilities. All the remaining implications
follow from the already proved ones. Thus, the proof is concluded.
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The results presented in this section, including several steps of the related proofs,
are the basis for what is coming in the next section, where on top of time-varying
perturbations in uncertain transition probability matrices, we consider also the
presence of a bounded process noise.

3.3 Stability conditions with bounded process noise

In order to underline how the time-varying disturbances in uncertain transition
probability matrices affect the stability of discrete-time Markov jump linear sys-
tems, until now we have focused on state-space models without noise, control input,
or any type of uncertainties in system parameters. Obviously, these parts of the
model are not immune to the disturbances. Notably, the discrepancies between
the modeled system states and the real process are often represented by an addi-
tive process noise, which in this section is described by an `2-stochastic signal (see
Subsection 2.2 for its definition). Such problem setup is particularly useful for the
H∞-control problems, as described by Costa et al. [12, Chapter 7, pp. 143–166] for
the Markov jump linear systems with time-invariant and exactly known transition
probabilities between the operational modes of the system.

So, let us consider again an autonomous discrete-time Markov jump linear sys-
tem described as in (3.3), i.e.,{

xk+1 = Aθkxk+Hθkvk,
x0 = x0, θ0 = ϑ0

where xk ∈ Fnx is a system’s state, vk ∈ Fnv an exogenous input representing a
process noise, while A, (Ai)Ni=1 ∈ NFnx,nx and H , (Hi)Ni=1 ∈ NFnx,nv are the re-
spective transformation matrices. As before, the transition probability matrices are
time-varying, with variations that are arbitrary within a polytopic set, as formally
stated by Assumption 2.2. The initial conditions are x0∈Hnx

0 and θ0∈Θ0.
It is easy to see by repeated applications of the recursion for xk that the system

state evolves as

xk =
(∏k−1

t=0
A∗θt

)∗
x0 +

∑k−1

t=0

(∏k−1

j=t+1
A∗θj

)∗
Hθtvt (3.47)

Let us indicate by Re[·] either the real part of a complex number or, when applied
to matrices, the operation of taking the real part of each entry of a complex matrix.

As in the noiseless case, we find that the recursive equations for qi(k) and Qi(k)
for polytopic time-inhomogeneous MJLSs as in (3.3) again have the same structure
as their counterpart with time-homogeneous exactly known transition probability
matrices [12, p. 50–52]. We show this in the following proposition.

Proposition 3.7. Consider the system (3.3). For all k∈T, j∈M, we have that

qj(k + 1) =
∑N

i=1
pij(k)Aiqi(k) +

∑N

i=1
pij(k)Hiri(k) (3.48)
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Qj(k + 1) =
∑N

i=1
pij(k)AiQi(k)A∗i +

∑N

i=1
pij(k)HiRi(k)H∗i +

2 Re
(∑N

i=1
pij(k)AiWi(k)H∗i

)
(3.49)

Proof. The proof is very similar to the proof of Proposition 3.2, so we only outline
the procedure.

Regarding the first statement, from the definition (3.11) of the vector qi(k) of
expected values of the system state variables in correspondence of the i-th opera-
tional mode, the recursive equation (3.3) describing the evolution of the system’s
state xk, the definition (3.12) of the vector ri(k) of expected values of the process
noise related to the i-th operational mode, with i∈M, by linearity of the expected
value, we have that

qj(k+1) =
∑N

i=1
E
(
(Aixk +Hivk) 1{θk=i}1{θk+1=j}

)
=
∑N

i=1
pij(k)Aiqi(k) +

∑N

i=1
pij(k)Hiri(k)

The second statement can be proven in the same manner, i.e., by linearity of the
expected value, from the definition (3.13) of the matrix Qi(k), the state-space
representation (3.3) of the Markov jump linear system, the definition (3.15) of the
matrix Ri(k), and the definition (3.18) of the matrix Wi(k), after remembering the
properties of complex conjugation reported in appendix’s Subsection B.4, and the
fact that the sum of a complex number with its complex conjugate gives us two
times the real part of the complex number.

Following the same line of the previous section, we rewrite the recursive equation
(3.49) for Qi(k) in a matrix form.

In particular, the recursive equation of Q(k) for Markov jump linear systems
that accounts for a process noise is obtained by applying the equation (3.49) de-
scribing the dynamics of Qi(k) (from Proposition 3.7), together with the definition
(B.55) of the linear transformation vec2(·), the correspondent definition (B.29) of
the linear map vec(·), and the relevant properties (B.30) and (B.31) of the Kro-
necker product, to Q(k), defined by (3.14). Notably,

vec2(Q(k+1)) = Λ(k)vec2(Q(k))+Γ(k)vec2(R(k))+2 Re
(
Ξ(k)vec2(W (k))

)
(3.50)

where Λ(k) is defined as in (3.29), and Γ(k), Ξ(k) are defined similarly, i.e.,

Γ(k) ,
(
PT (k)⊗ In2

x

)(⊕N

i=1

(
H̄i⊗Hi

))
(3.51)

Ξ(k) ,
(
PT (k)⊗ In2

x

)(⊕N

i=1

(
H̄i⊗Ai

))
(3.52)

We recall that R(k) is defined by (3.16), and W (k) is shown in (3.19).
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From the repeated applications of (3.50), we obtain the following relation

vec2(Q(k)) =
(∏k−1

t=0
Λ∗(t)

)∗
vec2(Q(0)) +

∑k−1

t=0

(∏k−1

j=t+1
Λ∗(j)

)∗
Γ(t)vec2(R(t)) +

2 Re
(∑k−1

t=0

(∏k−1

j=t+1
Λ∗(j)

)∗
Ξ(t)vec2(W (t))

)
(3.53)

Now we are ready to state the main result of this section, which will be presented
in the following dedicated subsection.

Mean square stability with process noise

In the next theorem we will show that the mean square stability for the system
(3.3) is equivalent to the discrete-time Markov jump linear system being a bounded
linear operator that maps `2-stochastic exogenous input signals into `2-stochastic
output signals. As before, this result represents a useful generalization of the notion
already known for time-homogeneous Markov jump linear systems. In fact, when
there is only one time-invariant transition probability matrix, joint spectral radius
corresponds to a spectral radius.

Theorem 3.8. Given a discrete-time Markov jump linear system (3.3) with un-
known time-varying transition probability matrix P (k)∈ convVP, then ρ̂(VΛ)<1 if
and only if x = {xk : k∈T}∈Hnx for every v = {vk : k∈T}∈Hnv , and any initial
condition x0∈Hnx

0 and θ0∈Θ0.

Proof. To prove the necessity (that is, ρ̂(VΛ)<1 ⇒ x∈Hnx ∀ v∈Hnv , x0∈Hnx
0 ,

θ0 ∈Θ0), all we have to show is that ‖x‖2 <∞ since on the considered stochastic
basis (Ωx,G, (Gk) ,Pr) described in detail in Subsection 2.2 we clearly have that
(xt)kt=0∈H

nx
k for each k∈T.

While looking at the equation (3.47) describing xk as a function of x0, i.e.,

xk =
(∏k−1

t=0
A∗θt

)∗
x0 +

∑k−1

t=0

(∏k−1

j=t+1
A∗θj

)∗
Hθtvt = x̌k +

∑k−1

t=0
v̌t

we notice that the first addend x̌k on the right-hand side of the equality is clearly
related to the noiseless version of system (3.3), that is, when vk=0 for each k∈T.
The other addend describes the contribution of the noise.

So, the proof of necessity is divided into three parts: the first one is related
to the noiseless part of the evolution of the system’s state x̌k, the second part is
connected to the partial dynamics due to the noise, i.e., v̌t, while the last part
corresponds to the combination of the previous two.
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By hypothesis ρ̂(VΛ) < 1, and for the first part we apply the same steps of
the proof of the fact that, for Markov jump linear systems without process noise,
exponential mean square stability implies mean square stability.

This procedure is illustrated in the proof of Theorem 3.6, where it is shown that
for some k′∈T, there always exists a k∈T, k≥k′, such that for any N,nx∈Z+,

‖x̌k‖22 = E
(
‖x̌k‖22

)
≤ βζk ‖x0‖22 = Nn2

xβ
′ζk ‖x0‖22 (3.54)

with ζ∈R+ such that
ζ∈(ρ̂(VΛ), 1) (3.55)

and β′∈R+, β′≥1, being defined as

β′ = ζ−k
′

sup
P∈Pj(VΛ), 0≤j≤k′

‖P‖ (3.56)

where Pj(VΛ) indicates the set of all possible products of length j whose factors
are elements of VΛ, as formally defined by (B.63).

Regarding the second part, which is related to the evolution in time of the
partial contribution of the noise, the procedural steps are similar.

For each t∈Tk−1 we consider

v̌t =
(∏k−1

j=t+1
A∗θj

)∗
Hθtvt (3.57)

It is clear from the expression (3.57) that v̌t behaves as an autonomous noiseless
Markov jump linear system with the initial condition given by Hθtvt.

The second moment for this initial condition is obtained as

E
(
Hθtvt (Hθtvt)

∗)=
∑N

i=1
E
(
Hθt

(
vtvt1{θt=i}

)
H∗θt

)
=
∑N

i=1
HiRi(t)H∗i pi(t)

So, it is trivial to verify that the second moment of v̌t is already computed in
matrix form in the equation (3.53) describing the evolution of the second moment
of the autonomous system (3.3) with a process noise. It is expressed by

vec2
(
Ř(t)

)
=
(∏k−1

j=t+1
Λ∗(j)

)∗
Γ(t)vec2(R(t))

=
(∏k−1

j=t+1
Λ∗(j)

)∗
vec2(HR(t)H∗) (3.58)

where Γ(t) is given by (3.51), R(t) and Ri(t) are expressed via (3.16) and (3.15),
respectively, HR(t)H∗ is represented in (3.17), while Ř(t) and Ři(k) are defined
as follows:

Ři(t) , E
(
v̌tv̌∗t1{θt=i}

)
∈ Fnx,nx

0 (3.59)

Ř(t) ,
(
Ři(t)

)N
i=1
∈ NFnx,nx

0 (3.60)
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From here on, we follow the line of the proof of Theorem 3.6. Thus, we only
outline the main points, without explaining every passage. First of all, we make
the same considerations used in the proof of the third statement (3.27) in Propo-
sition 3.2, especially the inequality (3.24) between the trace of a matrix and any
norm of the same matrix, proved in Lemma 3.1, obtaining that ∀t∈Tk−1

‖v̌t‖22 =E
(
‖v̌t‖22

)
=
∑N

i=1
tr
(
E
(
v̌tv̌∗t1{θt=i}

))
=
∑N

i=1
tr
(
Ři(k)

)
≤nx

∑N

i=1

∥∥∥Ři(k)
∥∥∥

which holds for any equivalent matrix norm, including `1-norm.
We apply `1-norm to Ři(k), obtaining that∥∥∥Ři(k)

∥∥∥
1

=
∥∥∥vec

(
Ři(k)

)∥∥∥
1

=

∥∥∥∥∥
(∏k−1

j=t+1
Λ∗(j)

)∗
[(i−1)n2

x+1,in2
x]•

vec2(HR(t)H∗)

∥∥∥∥∥
1

≤
∥∥∥∥(∏k−1

j=t+1
Λ∗(j)

)∥∥∥∥
1

∥∥vec2(HR(t)H∗)
∥∥

1

Since the previous inequality is valid for each i∈M, we write that

‖v̌t‖22 ≤ nxN

∥∥∥∥(∏k−1

j=t+1
Λ∗(j)

)∥∥∥∥
1

∥∥vec2(HR(t)H∗)
∥∥

1 (3.61)

From the definition (B.49) of the `1-norm, it follows that∥∥vec2(HR(t)H∗)
∥∥

1 =
∑N

i=1
‖vec(HiRi(t)H∗i )‖1 =

∑N

i=1
‖HiRi(t)H∗i ‖1

Recollecting that the `1-norm is related to the Frobenius norm by the inequality
(B.50), we write that

‖HiRi(t)H∗i ‖1 ≤ nx ‖HiRi(t)Hi‖F

As before, by construction HiRi(t)H∗i ∈F
nx,nx
0 for each i∈M. Thus, we apply the

property (B.53) of the trace of a positive semi-definite matrix, obtaining that

‖HiRi(t)H∗i ‖F ≤ tr(HiRi(t)H∗i ) = tr
(
HiE

(
vtv∗t1{θt=i}

)
H∗i
)

where we used the definition (3.15) of Ri(t).
Consequently, from the previous three equations, by linearity of the trace and

definition (B.54c) of the max-norm on the linear space made up of all N -sequences
of either real or complex matrices, we obtain that∥∥vec2(HR(t)H∗)

∥∥
1 ≤ nx

∑N

i=1
Hitr

(
E
(
vtv∗t1{θt=i}

))
H∗i ≤ nx ‖H‖2max ‖vt‖

2
2

Then, by the radical test for infinite series, valid for all equivalent matrix norms,
we also have that ∥∥∥∥(∏k−1

j=t+1
Λ∗(j)

)∥∥∥∥
1
≤ β′ζk−t−1
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where ζ and β′ are those defined by (3.55) and (3.56), respectively.
Putting together both parts of (3.61), we obtain that

‖v̌t‖22 ≤ Nn
2
xβ
′ζk−i−1 ‖H‖2max ‖vt‖

2
2 (3.62)

which holds for each t∈Tk−1.
So, we have that

xk =
(∏k−1

t=0
A∗θt

)∗
x0 +

∑k−1

t=0

(∏k−1

j=t+1
A∗θj

)∗
Hθtvt = x̌k +

∑k−1

t=0
v̌t

together with bounds on ‖x̌k‖22 expressed by (3.54) and on ‖v̌t‖22, given by (3.62).
By triangle inequality (B.3), we have that

‖xk‖2 ≤ ‖x̌k‖2 +
∑k−1

t=0
‖v̌t‖2

We still need to show that ‖xk‖2<∞.
From now on, in this last part of the proof of the necessity, we follow the steps of

the proof provided in [12, Theorem 3.34, pp. 55-57] for time-homogeneous MJLSs
with bounded process noise.

Applying the bounds obtained for ‖x̌k‖22 in (3.54) and for ‖v̌t‖22 in (3.62), and
also considering the expressions (3.55), (3.56) of respectively ζ and β′, we can state
that there exist ζ∈(ρ̂(VΛ), 1) and β′≥1 such that

‖xk‖2 ≤
∑k

t=0
ζk−tβt

where
ζk−t,

√
ζk−t

β0,nx
√
Nβ′ ‖x0‖2

βt,nx
√
Nβ′‖H‖max ‖vt−1‖2 , t≥1

We set a,(ζi)ki=0 and b,(βi)ki=0. Since a∈`1 (i.e.,
∑∞
i=0 |ζi|<∞) and b∈`2 (that is,∑∞

i=0 |βi|2<∞), it follows that the convolution c,a ∗ b=(ci)ki=0, ci,
∑i
t=0 ζi−tβt,

lies itself in `2 with ‖c‖2≤‖a‖1‖b‖2 [12, p. 56]. Hence,

‖x‖2 =
√∑∞

k=0
E
(
‖xk‖22

)
≤
√∑∞

i=0
c2i = ‖c‖2 <∞

This concludes the proof of necessity.
To prove the sufficiency (i.e., x∈Hnx ∀ v∈Hnv , x0∈Hnx

0 , θ0∈Θ0⇒ ρ̂(VΛ)<1)
we observe that, by hypothesis

‖x‖22 =
∑∞

k=0
E
(
‖xk‖22

)
<∞
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for all v∈Hnv , x0∈Hnx
0 , and θ0∈Θ0.

Since, as reported in appendix’s Subsection B.3, the absolute convergence of a
series in a normed linear space implies the convergence of a series in that space, by
(B.7) we have that

lim
k→∞

E(xkx∗k) = 0

for all x0∈Hnx
0 , θ0∈Θ0, and for any v∈Hnv .

Since this last statement holds for every v ∈ Hnv , we can make vk = 0 for all
k ∈ T in the state-space representation of the autonomous Markov jump linear
system (3.3), obtaining the noiseless model (3.23). Thus, we have exactly the
same conditions found at the beginning of the proof of necessity of Theorem 3.4.
Application of the procedure illustrated there brings us to the thesis and concludes
our proof of sufficiency.

Illustrative example with bounded noise
This subsection is a follow-up of the motivational example presented in Subsec-
tion 3.1, where we have seen that the perturbations on values of transition proba-
bilities can make a stable Markov jump linear system unstable.

First, we show that the addition of the bounded process noise does not change
the considerations on stability, i.e., time-homogeneous systems remain stable, while
the perturbed MJLSs remain unstable. Then, we show that by shrinking the poly-
tope defining the uncertainty of the transition probability matrix to a new one,
with joint spectral radius of the set of vertices smaller then one, we obtain that
both noiseless autonomous discrete-time Markov jump linear system as in (3.23),
and its counterpart perturbed by a bounded process noise (3.3), become stable.

So, we consider the autonomous Markov jump linear system with N = 3 op-
erational modes, having the same as in example of Subsection 3.1 state matrices
associated with the operational modes, and the same set of vertices defining the
polytope bounding the values of time-varying transition probability matrix P (k):

A1 =
[
1 0
0 1.2

]
, A2 =

[
1.13 0
0.16 0.48

]
, A3 =

[
0.3 0.13
0.16 1.14

]

P1 =

 0 0.35 0.65
0.6 0.4 0
0.4 0.6 0

 , P2 =

0.25 0.75 0
0 0.6 0.4
0 0.4 0.6


The spectral radii ρ of the matrices Λ are:

ρ(Λ1) = 0.901601, ρ(Λ2) = 0.905686

and the joint spectral radius (computed via JSR toolbox [94]) is

ρ̂({Λ1,Λ2}) ≥ 1.024442
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Here, we also take into account a process noise vk ∈ [−1, 1]× [−1, 1] ⊂ R2,
which perturbs the system’s state variables according to the following process noise
transformation matrices

H1 = 2I2, H2 = 1.5I2, H3 = I2

We report one possible dynamical behavior of the system, obtained, as before,
for x0 = [100; 85] and the initial probability distribution p0 = [0.33, 0.34, 0.33]T .
The obtained system trajectories for the system perturbed by the described process
noise are illustrated in the following figures.

Figure 3.4 shows us a trajectory of the system state vector xk perturbed by the
process noise vk, when the time-homogeneous transition probability matrix is P1.

Figure 3.4: A possible trajectory of perturbed xk when TPM is P1

Again, after repeating the trial under the same conditions, except that the
considered transition probability matrix being P2, one obtains a system’s state
trajectory (which takes into account the process noise vk) presented in Figure 3.5.

Since the joint spectral radius (of the set of the vertices defining the bounds
on variations of values of the transition probability matrix) is greater than one,
it comes without surprise that, repeating the experiment again under the same
conditions, except that the transition probability matrix being allowed to switch
arbitrarily between P1 and P2 at each time step, brings to light a trajectory shown
in Figure 3.6. The considered Markov jump linear system is clearly unstable.

However, by shrinking the polytope defining the uncertainty of the transition
probability matrix to e.g. the new vertices

P̄1 = 0.8P1 + 0.2P2, P̄2 = 0.2P1 + 0.8P2
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Figure 3.5: A possible trajectory of perturbed xk when TPM is P2

Figure 3.6: Trajectory of perturbed xk when TPM is switching between P1 and P2
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we obtain that the corresponding (whether perturbed by a process noise or not)
time-inhomogeneous system is robustly (mean square) stable, because the joint
spectral radius is

ρ̂
({

Λ̄1, Λ̄2
})
≤ 0.972553

Figures 3.7 and 3.8 show us trajectories of the time-inhomogeneous Markov
jump linear system where the transition probability matrix is switching arbitrarily
between P̄1 and P̄2 at each time step, in, respectively, the noiseless setting and in
case the system’s state is perturbed by a bounded process noise described before.

Figure 3.7: Trajectory of noiseless xk when TPM is switching between P̄1 and P̄2

In conclusion, the presented conditions, based on the notion of the joint spectral
radius of the set of vertices of the polytope of matrices characterizing the second
moment of Markov jump linear system’s state for all operational modes, permit
us to check whether the autonomous system is stable, regardless the presence of
bounded perturbations on the system’s state itself.

In the next section we extend the same concepts to the controlled systems,
introducing the basis of the rest of our works.

3.4 Structural properties of feedback control systems

The various “abilities” such as controllability, observability, reachability, recon-
structibility, stabilizability, and detectability are basic to the study of linear control
and system theory [97, pp. 1–15].
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Figure 3.8: Trajectory of perturbed xk when TPM is switching between P̄1 and P̄2

This section deals with the concepts of mean square detectability and mean
square stabilizability, which are the basic notions for the study of the feedback
control for (time-inhomogeneous polytopic) Markov jump linear systems.

The well-known definitions and characterization of controllability, stabilizability,
observability and detectability for linear time-invariant systems, which are, as we
recall, the special case of MJLSs, can be found in any textbook on the topic, also
for instance in [12, pp. 24–27], and thus will be omitted.

In the next two subsections we report directly our definitions of mean square
stabilizability and mean square detectability, which are generalized from the similar
concepts presented in [12, pp. 57–63] for Markov jump linear systems with time-
invariant transition probabilities between the operational modes.

Mean square stabilizability

Let us consider a discrete-time Markov jump linear system as in (2.1) defined on a
stochastic basis introduced in Subsection 2.2, i.e., (Ωx,G, (Gk) ,Pr). Since on such
filtered probability space all the system’s state variables, together with all the jump
variables, are (assumed to be) measurable, the state space model representation is
the following: {

xk+1 = Aθkxk+Bθkuk+Hθkvk,
x0 = x0, θ0 = ϑ0, p0 = p0
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The state vector xk, the controlled input uk and the exogenous input vk, together
with the related (sequences of) transformation matrices and initial conditions, are
the same as before. They are presented in detail in Section 2.1. We have already
seen in Section 3.3 that the condition for the mean square stability of a Markov jump
linear system with bounded process noise represented by `2-stochastic exogenous
input signal is the same as for the noiseless version of the system. Thus, as may be
expected, the definition of the mean square stabilizability is related to the noiseless
setting, i.e., considering vk to be a vector of all zeros for each k∈T, as represented
by the following dynamical system{

xk+1 = Aθkxk+Bθkuk
x0 = x0, θ0 = ϑ0, p0 = p0

(3.63)

The aforementioned definition of the mean square stabilizability is the following.

Definition 3.6. The pair (A,B) of N -sequences of state and control input matrices
A=(Ai)Ni=1 andB=(Bi)Ni=1 related to all N operational modes of the system (3.63),
which has unknown and time-varying transition probability matrix P (k)∈ convVP,
is mean square stabilizable if there exists an N -sequences of control matrices
K=(Ki)Ni=1∈NFnu,nx such that the system (3.63) with synchronous state feedback
controller uk = Kθkxk is mean square stable. In this case, K is said to stabilize
the pair (A,B).

Since the controller uk = Kθkxk gives to the system (3.63) a form of a noiseless
autonomous system as in (3.23), that is

xk+1 = (Aθk+BθkKθk) xk

we can apply the results of the corresponding Section 3.2.
Specifically, let us write

A′θk = Aθk +BθkKθk (3.64)

The matrix (3.29) associated to the second moment of xk becomes

Λ′(k) ,
(
PT (k)⊗ In2

x

)(⊕N

i=1

(
Ā′i⊗A′i

))
which is still polytopic, that is, ∀k∈T

Λ′(k) =
V∑
l=1

λl(k)Λ′l, λl(k) ≥ 0,
V∑
l=1

λl(k) = 1

with
Λ′l ,

(
PTl ⊗ In2

x

)(⊕N

i=1

(
Ā′i⊗A′i

))
(3.65)
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where, again, for each l∈V, Pl ∈VP⊂VRN,N , i.e, Pl are elements of a given finite
set of transition probability matrices, which are the vertices of a convex polytope.

Similarly to what has been done before, we indicate by VΛ′ the set of vertices
of the convex polytope of the matrices Λ′(k) related to the second moment of
controlled system’s state xk. Formally, we write that

VΛ′ ,
{

Λ′l∈FNn
2
x,Nn

2
x : l∈V

}
(3.66)

Then, the condition for verifying the mean square stabilizability of a MJLS
(3.63) is given by the following proposition.

Proposition 3.9. The discrete-time Markov jump linear system (3.63) with un-
known and time-varying transition probability matrix P (k)∈convVP is mean square
stabilizable if and only if ρ̂(VΛ′)<1.

Proof. From (3.64), this result is a direct consequence of Theorem 3.4.

It is also obvious that the results of Theorems 3.6 and 3.8 are still valid and
ρ̂(VΛ′)< 1 ensures exponential mean square stabilizability and stochastic stabiliz-
ability in the noiseless setting, and robust mean square stabilizability of polytopic
time-inhomogeneous Markov jump linear systems subject to a process noise in form
of an `2-stochastic exogenous input signal.

Mean square detectability
It is well-known fact in the control theory that the necessity of the state observer
arises when not all the system’s state variables are available to the controller. We
remind that in a such scenario the stochastic basis to consider is that of the Subsec-
tion 2.2, i.e., (Ωy,F , (Fk) ,Pr). As in the case of linear time-invariant systems [98, p.
63], the (mean square) detectability ensures that a full order (synchronous state-
dependent) steady-state observer exists.

In order to present the formal definition of the mean square detectability, let us
consider the following noiseless Markov jump linear system:{

xk+1 = Aθkxk+Bθkuk,
yk = Fθkxk

(3.67)

together with a full-order Markov jump filter having a structure similar to the
structure of the Luenberger observer [98, p. 63], i.e.,{

x̃k+1 = Aθk x̃k +Bθkuk − Lθk(yk−ỹk) ,
ỹk=Fθk x̃k

(3.68)

with L, (Li)Ni=1 being a vector of filter gain matrices, each of which related to an
operational mode, and x̃k being the estimated state, also known as the state of the
observer, while ỹk is the output of the filter.
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Then, we define the observation (or, equivalently, estimation) error as

ẽk = xk − x̃k (3.69)

From the state-space representations of the Markov jump linear system (3.67)
and the related full-order Markov jump filter (3.68), we see that the aforementioned
observation error has the following dynamical behavior:

ẽk+1 = xk+1 − x̃k+1 = Aθk(xk − x̃k) + Lθk(yk−ỹk)
= Aθk ẽk + Lθk(Fθkxk − Fθk x̃k)
= (Aθk + LθkFθk) ẽk (3.70)

We observe that the dynamics of the estimation error are those of the noiseless
autonomous MJLS seen in Sections 3.2 and 3.2. Thus, similarly to how it was
done for the stabilizability, we define the mean square detectability for Markov
jump linear systems with polytopic time-inhomogeneous transition probabilities as
follows.

Definition 3.7. The pair (F ,A) of N -sequences of observation and state matrices
F = (Fi)Ni=1 and A = (Ai)Ni=1 related to all N operational modes of the system
(3.67) with unknown and time-varying transition probability matrix P (k)∈convVP,
is mean square detectable if there exists an N -sequences of filter gain matrices
L,(Li)Ni=1∈NFnx,ny such that the evolution (3.70) of the observation error for the
system (3.67) with the synchronous full-order Markov jump filter (3.68) is mean
square stable.

With exactly the same procedure seen in the previous subsection, we define

A′′θk = Aθk + LθkFθk (3.71)

Then, the matrix associated to the second moment of ek is again polytopic, with
vertices given by

Λ′′l ,
(
PTl ⊗ In2

x

)(⊕N

i=1

(
Ā′′i ⊗A′′i

))
(3.72)

We indicate by VΛ′′ the set of all such vertices Λ′′l .
So, the condition for verifying the mean square detectability of a MJLS (3.67)

is given by the following proposition.

Proposition 3.10. The discrete-time Markov jump linear system (3.67) with un-
known and time-varying transition probability matrix P (k)∈convVP is mean square
detectable if and only if ρ̂(VΛ′′)<1.

Proof. From (3.71), this result is a direct consequence of Theorem 3.4.



Chapter 4

Optimal robust filtering

As it was pointed out in the seminal work [99] of Rudolph Emil Kalman, which
has introduced the renowned Kalman filter, the problem of estimation of the

unobservable value of the signal at the present time step is called filtering.
Filtering problems are of great interest not only because of their wide number of

applications to, e.g., problems of tracking of satellites, signal detection, stochastic
control, aerospace engineering [100], but also for being the main step in studying
control problems with partial observations on the state variable [12].

In fact, in our most recent work [3] (which was accepted for presentation at the
56th IEEE Conference on Decision and Control (CDC), to be held in December 2017
in Melbourne, Australia), we have showed that, as for linear-quadratic-Gaussian
(LQG) control in the case with no jumps, also for the Markov jump linear systems
with polytopic time-inhomogeneous transition probabilities the optimal controller
having only partial information on the continuous state can be obtained from two
types of coupled Riccati difference equations, one associated to the control prob-
lem, and the other one associated to the filtering problem. When the transition
probabilities between operation modes are known at each time step, our results
coincide with those presented in [12], and when there is only one mode of opera-
tion, they coincide with the traditional separation principle for the LQG control of
discrete-time linear systems.

This chapter is based on the said work [3] and is dedicated to the study of the
finite horizon optimal filtering problem for the MJLSs with time-varying transition
probabilities, which are bounded, but unmeasurable, as specified in Assumption 2.2.

As one can expect, we use the same standard considerations made for the
Markov jump linear systems with known and time-invariant transition probabil-
ities, i.e., that together with the jump variable θk, only some of the system’s state
variables are measured and available to the controller. These state variables are
represented by the vector yk. So, as pointed out in the previous chapter, the ap-
propriate stochastic basis is that of the Subsection 2.2, i.e., (Ωy,F , (Fk) ,Pr), and
the asymptotic observer exists, if and only if the system is detectable.

61
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We should stress the fact that, as by standard practice in the MJLSs’ theory,
we are restricting our attention to the family of linear Markov jump filters, since
otherwise the optimal linear mean square filter would be obtained from a sample
path Kalman filter [101]. The reason for choosing this family of filters is that their
state depends only on the present value of the Markov parameter (rather than
on the entire past history of modes, (θt)kt=0), so that the closed loop system is
again a Markov jump linear system. Besides, in comparison with the Kalman filter,
optimal linear Markov jump filter requires much smaller number of precomputed
filter’s gains, as explained in [12, Remark 5.2, p. 104].

The formal definition of the problem of the optimal filtering, which is robust to
the bounded dynamic perturbations of the transition probability matrices of Markov
jump linear systems, is presented in the next Section 4.1, while in Section 4.2 the
optimal solution to the aforementioned problem is illustrated.

4.1 Problem definition

Let us consider the discrete-time polytopic time-inhomogeneous Markov jump linear
system as in (2.1) defined on the stochastic basis (Ωy,F , (Fk) ,Pr), and described
by the following dynamical system

xk+1 = Aθkxk+Bθkuk+Hθkwk,
yk = Fθkxk+Gθkwk,
x0 = x0, θ0 = ϑ0, p0 = p0

(4.1)

where the system’s variables, matrices, and initial states are those defined in Sec-
tion 2.1. Specifically, xk ∈ Fnx is a vector of system’s state variables, uk ∈ Fnu is
control vector, which gathers the control actions applied to the process, yk∈Fny is
the vector of measured system’s states (that are available for feedback, as we will
see in the next chapter), with ny < nx, while the exogenous input wk ∈ Fnw is a
wide sense white noise, which represents disturbances. Notably, far each k, t∈T

E(wk)=0, E(wkw∗k)=Inw , E(wkw∗t )=0 (4.2)

We observe that, compared to the complete model (2.1) of a Markov jump linear
system, the model (4.1) used in our presentation of the filtering problem has the
same wide sense white noise as both the observation noise and the process noise.
This is justified by the fact that in the filtering problem considered here, yk repre-
sents the measured part of xk, where the control input uk is known to the controller
and thus can be accounted for in the proposed structure of the Markov jump filter,
in the same manner as it was done in Subsection 3.10. So, from the filter’s point
of view, the noise wk contributes to the evolution of the system’s state through
the process noise transformation matrix Hθk , and it is observed by the Markov
jump filter thanks to the observation noise matrix Gθk . That said, the closed loop
MJLS considered in the problem of the optimal control with partial observation
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of the system’s state xk, which will be shown in the next chapter, will use some
other noise sequence vk, which is different from wk, as a process noise (in order to
derive the separation principle described in Section 5.3). See also Section 5.1 for
the additional details.

The relevant for the filtering problem system matrices areA,(Ai)Ni=1∈NFnx,nx ,
B,(Bi)Ni=1∈NFnx,nu , H,(Hi)Ni=1∈NFnx,nw , together with F ,(Fi)Ni=1∈NFny,nx ,
and G,(Gi)Ni=1∈NFny,nw ; they are the N -sequences of state, input, process noise,
observation, and observation noise matrices, respectively, where each matrix in the
related sequence is associated to an operational mode.

As usual, the initial conditions for a Markov jump linear system consist of the
initial state of the system, x0 (with x0 ∈ Fnx being its value), the initial state
of the Markov chain θy, i.e., θ0 (which has ϑ0 ∈M as its value), and the initial
probability distribution of the states of the jump variable θ0, denoted by p0 (and
having p0∈RN0 as its value).

For the sake of completeness, we recall that being polytopic time-inhomogeneous
for a Markov jump linear system means that it satisfies the Assumption 2.2.

So, we cast a finite-horizon robust optimization problem as a min-max problem
of optimizing robust performance, i.e., finding the minimum over the filtering error
of the maximum over the transition probability disturbance.

This problem can be presented also from the game-theoretic point of view, where
at each time step k ∈ T the perturbation-player (environment and/or malicious
adversary) tries to maximize the cost while the filter tries to minimize the cost.

Such formulation requires to make explicit the following assumption on the
information structure for the observer and the adversary.

Assumption 4.1. The perturbation-player has no information on the choice of the
filter and vice versa.

Following the usual notational conventions of this thesis, in particular those
shown in appendix’s Subsections B.4 and B.3, we denote by Pi•(k) the i-th row
of the transition probability matrix P (k) and by P•j(k) the j-th column of the
transition probability matrix P (k). It is obvious from the expression (2.17) in
Assumption 2.2 that Pi•(k) and P•j(k) are polytopic sets of stochastic vectors.
We also indicate by P•θy ,

(
P•θt+1(t)

)T−1
t=0 the sequence of the length T ∈ T of

column vectors of the transition probability matrices P (k), with k ∈TT−1, where
the elements of P•θy clearly depend on the realizations of the Markov chain θy
described in Subsection 2.2.

We assume without loss of generality [12, Remark 5.1, pp.103–104] that ∀i∈M

HiG
∗
i = 0, GiG

∗
i � 0 (4.3)

that is, each HiG
∗
i is a matrix with all entries equal to zero, while each GiG∗i is a

positive definite matrix.
As in [12, p. 133], we assume independence of the noise sequence from the

Markov chain and the initial conditions:
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Assumption 4.2. The disturbance {wk : k∈T} and the Markov chain {θk : k∈T}
are independent stochastic processes, and the initial conditions (x0, θ0) are indepen-
dent random variables, with

E(x0)=ψ0, E(x0x∗0)=Ψ0 (4.4)

We examine the problem of designing the optimal robust mode-dependent syn-
chronous dynamic full-order Markov jump filter, described by the following family
of systems of stochastic equations:{

x̂k+1 = Âθk(k)x̂k + B̂θk(k)yk,
x̂0 = x̂0

(4.5)

with x̂k being the state of the filter, and the initial state x̂0 being deterministic,
chosen in a way to minimize quadratic functional cost of filtering, which will be
formally defined shortly.

We define the observation error introduced by any Markov jump filter as

êk = xk − x̂k (4.6)

and denote the sequence of estimation errors over a finite time horizon T ∈T as

ê,(êk)Tk=1

Then, the estimation cost is expressed by

Ĵ
(
ê, P•θy

)
,
∑T

k=1
E
(
‖êk‖22

)
=
∑T

k=1
tr(êk ê∗k) (4.7)

Consequently, the cost of robust filtering is described by

Ĵ (ê) , max
P•θy
Ĵ
(
ê, P•θy

)
(4.8)

and the optimal cost of robust filtering is defined for any sequence ê as

Ĵ , min
ê
Ĵ (ê) = min

ê
max
P•θy

∑T

k=1
E
(
‖êk‖22

)
(4.9)

So, in summary, the finite-horizon robust optimization problem we study in this
chapter is formally defined as follows.

Problem 4.1. Given a discrete-time Markov jump linear system (4.1) with un-
known and time-varying transition probability matrix P (k)∈convVP and satisfying
Assumption 4.2, find Â(k) , (Âi)Ni=1 ∈ NFnx,nx , B̂(k) , (B̂i)Ni=1 ∈ NFnx,ny , and x̂0
in (4.5), such that the optimal cost Ĵ of robust filtering (4.9) is achieved.
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We underline that the setting of Problem 4.1 is in finite time-horizon and does
not requires the assumption on detectability. We will see in in the next chapter
that for what concerns the control problem, the stabilizability will be required even
in the finite time horizon.

In the next section we present the solution to the stated problem of the optimal
filtering, which is robust to the dynamic perturbations (that are bounded in the
polytope) of the transition probability matrices of Markov jump linear systems.

4.2 Solution to the filtering problem

Let us consider a full-order synchronous Markov jump filter having a structure
similar to the structure of Luenberger observer, i.e.,

x̃k+1 = Aθk x̃k +Bθkuk − Lθk(k)(yk−ỹk) ,
ỹk = Fθk x̃k,
x̃0 , E(x0) = ψ0

(4.10)

with L(k) , (Li(k))Ni=1 being a vector of filter gain matrices, each of which asso-
ciated to an operational mode, and x̃k being the state of the observer, while ỹk is
the output of the Markov jump filter.

The associated filtering error for this particular structure of Markov jump filter
is denoted by

ẽk = xk − x̃k (4.11)
As before, the sequence of the filtering errors over a finite time horizon T ∈T is

indicated by
ẽ,(ẽk)Tk=1

In this section we show that the considered filter (4.10) is indeed optimal, i.e.,
a filter achieving the optimal cost of robust filtering, that is Ĵ defined by (4.9).

From the definitions (4.11) of the observation error, Markov jump linear system
(4.1) under consideration, and the proposed full-order synchronous Markov jump
filter (4.10), it is immediate to see that the estimation error has the following
dynamics:

ẽk+1 = (Aθk+LθkFθk) ẽk + (Hθk+LθkGθk) wk (4.12)

with the initial error and the related expectation value given respectively by

ẽ0 = x0 − ψ0, E(ẽ0) = 0 (4.13)

We have seen in the previous section, that the estimation cost (4.7) is related
to the trace of the second moment of the estimation error ẽk.

So, we define for each k ∈ T the N -sequence of the second moments of the
estimation errors associated to each operational mode as

Y (k)=(Yi(k))Ni=1
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where Y (k)∈NFnx,nx
0 , and

Yi(k) , E
(
ẽk ẽ∗k1{θk=i}

)
(4.14)

Clearly,
Ĵ
(
ẽ, P•θy

)
=
∑T

k=1

∑N

i=1
tr(Yi(k))

After defining
Ĵ (ẽk, P•i(k−1)) , tr(Yi(k)) (4.15)

we have that
Ĵ (ẽ, P•θy) =

∑T

k=1

∑N

i=1
Ĵ (ẽk, P•i(k−1)) (4.16)

From the definition of the probability distribution (B.79) of a random variable
θk, it is immediate to see that such a probability distribution evolves according to
the transition probabilities, i.e.,

pj(k+1) =
∑N

i=1
pi(k)pij(k) (4.17)

From the definition (4.14) of the second moment of the observation error Yi(k)
associated to an operational mode i∈M, the definition (4.13) of the initial estima-
tion error, Assumption 4.2, the definition (B.79) of the probability distribution of
a random variable θk and the definition (B.86) its initial probability distribution,
which value is provided as initial condition in (4.1), and the definition (4.10) of the
Markov jump filter, it follows that x̃0 =ψ0 is deterministic, and

Yi(0) = pi(0)(Ψ0 − ψ0ψ
∗
0) (4.18)

To present the recursion of the second moment of the observation error Yi(k), it
is useful to find first the values of the expected values of the cross-products between
the noise and the system’s state, the filter’s state, and the observation error. These
values are provided by the following lemma.

Lemma 4.1. The following statements hold for each k∈T, and for all i∈M:

E
(
wkx∗k1{θk=i}

)
= 0 (4.19)

E
(
wkx̃∗k1{θk=i}

)
= 0 (4.20)

E
(
wk ẽ∗k1{θk=i}

)
= 0 (4.21)

Proof. We construct our proof by induction on k∈T.
The first statement, (4.19), is proved as follows.
For k=0, from Assumption 4.2 and the definition (4.2) of the wide sense white

noise, we have that w0, θ0 and x0 are independent, and E(w0)=0. Hence,

E
(
w0x∗01{θ0=i}

)
=E(w0)E(x∗0)E

(
1{θk=i}

)
=0
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So, we suppose that E
(
wkx∗k1{θk=i}

)
=0.

From the definition (4.1) of the dynamical system representing the Markov jump
linear system under consideration, it follows that

xk+1 =
(∏k

i=0
A∗θi

)∗
x0 +

∑k

i=0

(∏k

j=i+1
A∗θj

)∗
(Bθiui +Hθiwi) (4.22)

Since for each i, k∈T, i≤k, Aθi , Bθi and Hθi are constant matrices, ui is a deter-
ministic input, from the previous equation, (4.22), combined with Assumption 4.2
and the definition (4.2) of the wide sense white noise, we obtain the desired result

E
(
wk+1x∗k+11{θk+1=i}

)
=0

The proof of the second statement, i.e., (4.20), follows the same line of reasoning.
For k= 0, from Assumption 4.2 and the dynamics (4.10) of the full-order syn-

chronous Markov jump filter under consideration, we have that w0 is independent
from θ0, and x̃0 =ψ0 is deterministic. Thence, from (4.2), we have that

E
(
w0x̃∗01{θ0=i}

)
= E(w0)ψ∗0 pi(0) = 0

Consequently, we suppose that E
(
wkx̃∗k1{θk=i}

)
=0.

From the definition (4.10) of the proposed Markov jump filter, we have that

x̃k+1 =
(∏k

i=0
(Aθi+Lθi(i)Fθi)

∗
)∗

x̃0 +

∑k

i=0

(∏k

j=i+1

(
Aθj+Lθj(j)Fθj

)∗)∗(
Bθiui +Gθiwi + Lθj(j)Fθjxi

)
(4.23)

where for each i, j, k ∈T, i≤ k, xi can be expressed through (4.22), Aθi , Bθi Gθi ,
Fθi (and obviously, also Aθj , and Fθj ) are constant matrices, ui is a deterministic
input, Lθi(i) is a gain matrix of our choice, from the previous expression (4.23)
combined with (4.22), Assumption 4.2 and the definition (4.2) of the wide sense
white noise, we obtain the desired result, that is,

E
(
wk+1x̃∗k+11{θk+1=i}

)
=0

Finally, from the definition (4.11) of the filtering error for the proposed Markov
jump filter and linearity of the expected value, it is clear that (4.21) is a direct
consequence of (4.19) and (4.20). Thus, the lemma is proved.

Now we are ready to present the expression of the recursion for the second
moment of the observation error Yi(k). From the definition (4.14) of Yi(k), the
dynamics (4.12) of the estimation error, Assumption 4.2, the evolution (4.17) of
the probability distribution pi of the jump variable θk, and the expected value
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(4.21) of the cross-product between the wide sense white noise and the observation
error ẽk for each operational mode i∈M, we have that

Yj(k+1)=
∑N

i=1
pij(k)[(Ai+Li(k)Fi)Yi(k)(A∗i +F ∗i L∗i (k))+

pi(k)(HiH
∗
i +Li(k)GiG∗iL∗i (k))] (4.24)

This results permits us to state the following lemma.

Lemma 4.2. At any time step k ∈ T and for any operational mode j ∈ M, the
maximum in transition probabilities of the estimation cost function Ĵ (ẽk, P•j(k−1))
is attained on a vertex of the convex polytope of the column-vectors that define the
j-th column of the polytopic transition probability matrix (2.17), i.e.,

Ĵj(ẽk) = max
P•j(k−1)

Ĵ (ẽk, P•j(k−1)) = max
P l
•j

Ĵ (ẽk, P l
•j) (4.25)

Proof. We construct our proof by induction on k∈T.
From the definition (4.8) of the cost of robust filtering, the expression (4.16) of

the total estimation cost as a sum of partial costs defined by (4.15), we know that

Ĵj(ẽk)= max
P•j(k)

tr(Yj(k))

Since Ĵj(ẽk) is defined on a finite time horizon (k)Tk=1, we start from the recur-
sion (4.24) of the second moment of the observation error Yi(k) by examining its
first step, Yj(1), filtered through G0 as a function of pij(0).

From the model (4.1) of the dynamical system representing the MJLS under
consideration, we see that, for each operational mode i∈M, its initial probability
distribution pi(0) is available as a deterministic quantity, Ai, Fi, Gi, Hi are constant
matrices, Li(0) is a filtering gain matrix, which we are free to choose (in a way that
minimizes the filtering error), and Yi(0) is computed from (4.18).

For any j ∈M, the value of j is fixed for Yj(1), and we have that Yj(1) is a
function of only P•j(0), which from Assumption 2.2 is defined as a convex hull of a
polytopic set of transition probability matrices. Since the trace operator (B.33) is
linear, it is immediate to verify that Jensen’s inequality [102, p. 25, Theorem 4.3]
holds for Ĵ (ẽ(1), P•j(0)) considered as a function of only P•j(0), that is, for all
λl(0) defined in (2.17)

Ĵ
(

ẽ(1),
∑V

l=1
λl(0)P l

•j

)
=
∑V

l=1
λl(0)Ĵ

(
ẽ(1), P l

•j
)

Hence, Ĵ (ẽ(1), P•j(0)) is a convex function in the variable P•j(0), which belongs
to a polytopic set. From [102, p. 343, Theorem 32.2], this means that

Ĵj(ẽ(1))= max
P•j(0)

Ĵ (ẽ(1), P•j(0))=max
P l
•j

Ĵ (ẽ(1), P l
•j)
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proving the statement for the base case.
Let us denote by

P υ0
•j ,arg max

P•j(0)
Ĵj(ẽ(1)) (4.26)

the vertex of the convex polytope of the column-vectors (which define the j-th
columns of the polytopic transition probability matrix) that achieves the maximal
filtering cost at time step k= 1 for the j-th operational mode. The vector P υ0

•j is
obtained during the computation of the robust filtering cost function Ĵj(ẽ(1)). It
defines the value of pj(1) via (4.17) and the value of Yj(1) via (4.24).

Bearing in mind this fact, we are ready to prove the inductive step.
So, we suppose that hypothesis (4.25) holds. Then, pi(k−1) is available ∀i∈M;

pj(k) can be computed through (4.17) as

pj(k)=pTk−1 arg max
P•j(k−1)

Ĵj(ẽk), (4.27)

where pk−1 is the probability distribution of all the operational modes at time step
k−1, defined similarly to p0 in (2.10) as

pk−1,


p1(k−1)
p2(k−1)

...
pN (k−1)

∈RN,1 (4.28)

and for any choice of L(k−1), we have that Y(k) is uniquely determined by the
corresponding P υk−1

•j .
Thus, in the expression (4.24) of the recursion for the second moment of the

observation error we have that all the parameters, apart from pij(k), are determin-
istic. The remaining considerations are the same as for the base case. They are
based on Assumption 2.2, Jensen’s inequality, and the fact that the maximum of
any convex function defined on a variable, which belongs to a polytopic set, is at-
tained on a vertex of the polytope, that bounds the domain of the named variable.
This leads us to the desired result and concludes the proof.

Let us denote by
P
υk−1
•j , arg max

P•j(k−1)
Ĵj(ẽk) (4.29)

the vertex of the convex polytope of the column-vectors (which define the j-th
columns of the polytopic transition probability matrix) that achieves the maximal
filtering cost at time step k for the j-th operational mode.

The vector P υk−1
•j is obtained during the computation of the robust filtering cost

function Ĵj(ẽk). It defines the value of pj(k) via (4.17) and the value of Yj(k) via
(4.24), allowing the recursion.
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The question of choosing L(k), in a way to minimize the filtering error, remains
open, and it is tackled in the remaining of this section.

Let us compute the value of E
(
ẽkx̃∗k1{θk=i}

)
.

For k=0, from the definition (4.11) of the observation error ẽk, its initial value
and the related expectation (4.13), first and second moments (4.4) of x0 found in
Assumption 4.2, and the linearity of the expected value, we have that for every
i∈M

E
(
ẽ0x̃∗01{θ0=i}

)
=0 (4.30)

Following the mathematical induction technique, we assume that ∀k ∈ (k)Tk=1,
T ∈T, the structure of L(k−1) is such that for each i∈M, E

(
ẽkx̃∗k1{θk=i}

)
=0, and

proceed to find L(k) such that E
(
ẽk+1x̃∗k+11{θk+1=j}

)
=0, for all j∈M.

From the definition (4.11) of ẽk and the related recursion (4.12), the definition
of the Markov jump filter (4.10), the state-space representation (4.1) of the MJLS,
linearity of the expected value, the fact that, ∀i∈M, the matrices Ai, Bi, Fi, Gi, Hi

are constant, Li(k) is determined by our choice, uk is deterministic, independence
between wk, θk, and x(0), given by Assumption 4.2, the characteristics (4.2) of
the wide sense white noise, (4.21) from Lemma 4.1, the induction hypothesis, the
definition (4.14) of the second moment of the estimation error for an operational
mode, and the properties (4.3) of HiG

∗
i and GiG∗i , we have that

E
(
ẽk+1x̃∗k+11{θk+1=j}

)
=−

∑N

i=1
pij(k)[(Ai+Li(k)Fi)Yi(k) (A∗i +F ∗i L∗i (k)) +

pi(k)Li(k)GiG∗iL∗i (k)]

which is equal to zero if (and only if, for every pij(k) 6=0)

Li(k) =
{

0 if pi(k)=0
−AiYi(k)F ∗i (FiYi(k)F ∗i +pi(k)GiG∗i )

−1 otherwise
(4.31)

which is obtained by observing that pi(k)=0 implies that Yi(k)=0 (see (4.17) and
(4.14)), and thus also Li(k)=0.

For the notational convenience, we define

Pk , {i∈M : pi(k) 6=0} (4.32)

From (4.31), (4.32), and the definition (4.29) of P υk•j , we have that

Yj(k+1) =
∑

i∈Pk
p υkij (AiYi(k)A∗i + pi(k)HiH

∗
i + Li(k)FiYi(k)A∗i ) (4.33)

where p υkij are the elements of P υk•j .
The following two lemmas are useful within the final proof that the observer

(4.10), having a filtering gain (4.31) computed interactively from (4.18), (4.33), and
(4.29) is optimal.
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Lemma 4.3. The following statement holds for each i∈M, k∈T:

E
(
ẽkx̂∗k1{θk=i}

)
=0 (4.34)

Proof. We construct our proof by induction on k∈T.
For k = 0, from (4.13), Assumption 4.2 on the initial conditions, and the fact

that x̂0 is deterministic, as stated in (4.5), we have that E
(
ẽ(0)x̂∗(0)1{θ(0)=i}

)
=0.

Then, we can suppose that E
(
ẽkx̂∗k1{θk=i}

)
=0.

From the definition (4.11) of the estimation error ẽk of the proposed filter (4.10)
and the related recursion (4.12) of the estimation error, the state-space representa-
tion (4.1) of the Markov jump linear system, the definition (4.5) of a generic Markov
jump filter, the fact that the matrices Ai, Fi, Gi are constant, Âi(k), B̂i(k), Li(k)
are deterministic, E

(
ẽkx̃∗k1{θk=i}

)
= 0 by construction of Li(k), induction hypoth-

esis, (4.21) and (4.20) from Lemma 4.1, the definition (4.2) of a wide sense white
noise, Assumption 4.2, the properties (4.3) of HiG

∗
i and GiG

∗
i , and the same ar-

gument used to prove (4.20) in stating that ∀i ∈M and ∀k ∈ T (where k ≥ 1 and
k≤T ), E

(
wkx̂∗k1{θk=i}

)
=0, we obtain that

E
(
ẽk+1x̃∗k+11{θk+1=i}

)
=
∑N

i=1
pij(k)[AiYi(k)F ∗i B̂∗i (k)+Li(k)GiG∗i B̂∗i (k)pi(k)]

which, after substitution of Li(k) with its explicit expression from (4.31), equals to
zero. Thus, the lemma is proved.

Lemma 4.4. Let êk be the error introduced by any Markov jump filter, as described
by (4.6), and Y(k) be the solution of the system of coupled Riccati difference equa-
tions associated to robust filtering problem at time step k, obtained from (4.33),
(4.31), and (4.29). Then, ∀k∈T, E

(
‖êk‖22

)
≥
∑N
i=1 tr (Yi(k)).

Proof. From the definition (4.6) of the estimation error êk introduced by any
Markov jump filter, and the definition (4.11) of the observation error ẽk of the
proposed Markov jump filter, the definition (4.14) of the second moment Yi(k) of
ẽk, the definition (4.7) of the estimation cost, linearity of the trace operator and
linearity of the expected value, follows that

E
(
‖êk‖22

)
=
∑N

i=1
tr
(
E
(
(ẽk+x̃k−x̂k)(ẽk+x̃k−x̂k)∗1{θk=i}

))
From (4.34) in Lemma 4.3 and since E

(
ẽkx̃∗k1{θk=i}

)
= 0 by construction of Li(k),

the previous expression becomes

E
(
‖êk‖22

)
=
∑N

i=1
tr (Yi(k))+E

(
‖x̃k−x̂k‖2

)
≥
∑N

i=1
tr(Yi(k)) = E

(
‖ẽk‖22

)
and the lemma is proved.

Then, the main result of this chapter is straightforward from Lemma 4.4, and the
state-space representation of a generic Markov jump filter (4.5) and the proposed
filter (4.10).
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Theorem 4.5. An optimal solution for the robust filtering problem posed above is:

Âi(k) = Ai + Li(k)Fi, B̂i(k) = −Li(k) (4.35)

with Li(k) as in (4.31), obtained from (4.33) and (4.29), and the optimal robust
cost defined in (4.9) is

Ĵ =
∑T

k=1

∑N

i=1
tr(Yi(k)) (4.36)

Proof. Direct consequence of Lemma 4.4, considering the definitions of a generic
Markov jump filter (4.5) and the proposed filter (4.10).

This result plays an important role in the derivation of the optimal dynamic
Markov jump controller having only partial information on the continuous state of
a Markov jump linear system with polytopic time-inhomogeneous transition prob-
abilities, as will be shown in the next chapter, where we present both the optimal
controller for the case where all the state variables are available to the controller
and the principle of separation of estimation and control for the case of partial
observations of the system’s states.



Chapter 5

Optimal robust control

An extensively studied and classical control problem is that of operating a dy-
namical system at minimum cost. The idea of minimizing a cost function is

to drive the state of the system to the origin without much strain from the control
variable which is, in general, a desirable behavior for control systems [12].

When the system dynamics are represented by a set of linear difference equations
and the cost is described by a quadratic function, the problem is referred to as linear-
quadratic regulator (from now on, LQR) problem. Its solution (see for instance the
original paper, [103]) is an important part of the solution to the linear-quadratic-
Gaussian (or LQG) control problem too.

In this chapter we first and foremost formally define and solve analytically via
a dynamic programming approach [104] the Markov jump version in polytopic
time-inhomogeneous setting of the finite-horizon robust linear quadratic regula-
tion problem. The provided solution consists of a finite set of recursive coupled
Riccati difference equations. This result is an extension of state-of-the-art which
is non-trivial from the technical point of view, since in the proof we need to show
that due to the time-varying nature of perturbations, at generic time step k the
vertex that attains the maximum is unknown and state dependent: with respect to
previous works on MJLSs having exactly known transition probabilities, we need to
define and address the explosion of the number of coupled Riccati difference equa-
tions. Then, in the last section of the chapter, we present the separation principle,
which allows us to solve the generalization of the classical LQG problem also for
Markov jump linear systems with time-varying and unmeasurable perturbations on
transition probabilities.

This presentation is based on our recent work [3], accepted by the 56th IEEE
Conference on Decision and Control, as was already mentioned in the previous
chapter, dedicated to the optimal robust filtering problem.

In the first section we give a formal definition of the optimal linear quadratic
state-feedback control problem for Markov jump linear systems with bounded per-
turbations of the transition probability matrices. Then, in Section 5.2 we present

73
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the related solution, while in the last section, 5.3, we illustrate the principle of
separation of estimation and control for the polytopic time-inhomogeneous Markov
jump linear systems.

5.1 Problem statement

Let us consider the discrete-time polytopic time-inhomogeneous Markov jump linear
system as in (2.1) defined on the stochastic basis (Ωx,G, (Gk) ,Pr) described in
Subsection 2.2, and represented by the following dynamical system

xk+1 = Aθkxk+Bθkuk+Φθkvk,
zk = Cθkxk+Dθkuk,
x0 = x0, θ0 = ϑ0, p0 = p0

(5.1)

where the system’s variables, initial states and most of the matrices are those
defined in Section 2.1. In particular, xk∈Fnx is a vector of system’s state variables,
uk∈Fnu is control vector, zk∈Fnz is a vector of system output variables, while the
exogenous input vk∈Fnv is a process noise representing the discrepancies between
the model and the real process, due to unmodeled dynamics or disturbances.

In order to be able to apply a separation principle (described in Section 5.3),
the process noise considered here is more general than the wide sense white noise
wk in the previous chapter, being required to satisfy only the following assumption,
borrowed from [12, p. 73].

Assumption 5.1. The stochastic process {vk : k∈T} describing the process noise
satisfies for each i∈M the following equations:

E
(
vkv∗k1{θk=i}

)
= Ri(k) ∈ Fnv,nv

0 , E
(
v0x∗01{θk=i}

)
= 0 (5.2)

Furthermore, for all measurable functions f(·) and g(·) we have that

E(f(vk)g(θk+1) | Gk) = E(f(vk) | Gk)
∑N

j=1
pθkj(k)g(j) (5.3)

In Section 5.3 we will show that this assumption is verified for the controlled
system with partial information on continuous state.

The set of admissible controllers, denoted by UT, is given by the sequence of
control laws

u , (uk)T−1
0

such that for each k ∈ TT−1, we have that uk is Gk-measurable, and both the
following two expressions hold.

E[vkx∗k1{θk=i}] = 0 (5.4)

E[vku∗k1{θk=i}] = 0 (5.5)
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The relevant for the control problem system matrices are A,(Ai)Ni=1∈NFnx,nx ,
B, (Bi)Ni=1∈NFnx,nu , C, (Hi)Ni=1∈NFnz,nx , together with D, (Fi)Ni=1∈NFnz,nu ,
and Φ,(Φi)Ni=1∈NFnx,nv ; they are the N -sequences of state, input, output, direct
transition, and process noise matrices, respectively, where each matrix in the related
sequence is associated to an operational mode.

As before, the initial conditions for a Markov jump linear system consist of the
initial system’s state x0, and the initial state of the jump variable θ0, considered
together with the initial probability distribution of its states, p0. The respective
values are x0, ϑ0 and p0.

We assume without loss of generality [12, Remark 4.1, p. 74] that ∀i∈M

C∗iDi = 0, D∗iDi � 0 (5.6)

that is, each C∗iDi is a matrix with all entries equal to zero, while each D∗iDi is
assumed to be a positive definite matrix.

For the sake of completeness, we remind again that a Markov jump linear system
considered also in this chapter is polytopic time-inhomogeneous, that is, it satisfies
Assumption 2.2.

As in the previous chapter, we follow the usual notational conventions of this
thesis, specifically those of appendix’s Subsections B.4 and B.3, and denote by
Pi•(k) the i-th row of the transition probability matrix P (k) and by P•j(k) its
j-th column. It is clear from (2.17) in Assumption 2.2 that Pi•(k) and P•j(k) are
polytopic sets of stochastic vectors. We indicate by Pθx•,(Pθt•(t))

T−1
t=0 the sequence

of the length T ∈T of row vectors of the transition probability matrices P (k), with
k ∈TT−1, where the elements of Pθx• obviously depend on the realizations of the
Markov chain θx described in Subsection 2.2.

Then, the problem of designing the optimal mode-dependent state-feedback
Markov jump controller, which is robust to all possible bounded perturbations
of transition probabilities, is formally defined as follows.

Problem 5.1. Given a discrete-time Markov jump linear system (5.1) with un-
known and time-varying transition probability matrix P (k)∈convVP and satisfying
Assumption 5.1, find the optimal sequence u=(uk)T−1

0 ∈UT of state-feedback mode-
dependent control inputs, such that the following optimal cost of robust control is
achieved.

J(θ0, x0) , min
u

max
Pθx•

∑T−1

k=0
E
(
‖zk‖22

)
+ E(x∗TZθT xT ) (5.7)

with Z,(Zi)Ni=1∈NFnx,nx
0 being a sequence of the terminal cost weighting matrices.

We remark that, like for the optimal robust filtering problem, we cast a finite-
horizon robust control optimization problem as a min-max problem of optimizing
robust performance, that is, finding the minimum over the control input of the
maximum over the transition probability disturbance.
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Thus, this problem too can be presented from the game-theoretic point of view,
where at each time step k ∈T the perturbation-player (environment and/or mali-
cious adversary) tries to maximize the cost while the controller tries to minimize
the cost. As it was done for the robust filter, the game-theoretic formulation of the
optimal robust control problem requires to make explicit the following assumption
on the information structure for the controller and the adversary.

Assumption 5.2. The perturbation-player has no information on the choice of the
controller and vice versa.

5.2 Solution to the state-feedback problem

Our solution to the problem 5.1 is based on a dynamic programming approach in
Bellman’s optimization formulation [104]. It is obtained by backward induction.

Since xT is GT -measurable on the stochastic basis (Ωx,G, (Gk) ,Pr), by linearity
of the expected value, it is clear from the definition (5.7) of the cost of robust
control, that the terminal cost is given by

J(θT , xT ) = E(x∗TXθT(T )xT | GT ) = x∗TE(XθT(T ) | GT ) xT = x∗TZθT xT (5.8)

where XθT (T ) , ZθT is a solution to the coupled Riccati difference equation (or,
CRDE, for short) for the robust control at the terminal time step.

We are interested in the explicit form of X(k)=(Xi(k))Ni=1∈NFnx,nx
0 .

A generic cost at time step k∈TT−1 is

J (θk, xk,uk, Pθk•(k))=E
(
‖zk‖22 + J (θk+1, xk+1) | Gk

)
(5.9)

The cost cost-to-go function is defined as

J (θk, xk) = min
uk

max
Pθk•(k)

J (θk, xk,uk, Pθk•(k)) (5.10)

From the definition of the expected value (B.78), the cost-to-go function (5.10) is
equal to

J (θk, xk) = min
uk

max
P[1,N]•(k)

∑N

i=1
pi(k)J (i, xk,uk, Pi•(k)) (5.11)

We start by examining the cost-to-go function (5.10) at time step k=T−1.
To improve the readability of the following steps, let us write ϑ as a short

notation for θk, which for k=T−1 corresponds to θT−1.
First, we observe that, from the definitions of the expected value (B.78), the

indicator function (3.10), and of the transition probability (2.5) between the oper-
ational modes, for ϑ= i, we have that

E(XθT (T ) | GT−1) =
∑N

j=1
pij(T−1)Xj(T ) (5.12)
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Then, the generic cost for each i∈M in (5.10) at time step k=T−1 is obtained
from the expressions of zT−1 and xT in state-space representation (5.1) of the
Markov jump linear system and from the equality (5.6) for C∗iDi.

Since xT−1, θT−1, and any admissible control input uT−1 are GT−1-measurable,
the state matrices Ai, Bi, Ci, Di and Φi are constant matrices for all i ∈ M,
X(T )∈NFnx,nx

0 , by linearity of the expected value, from Assumption 5.1 on process
noise, the expressions (5.4) and (5.5) characterizing all the admissible control inputs
in the sequence u ∈ UT, the fact (B.35) that the trace is invariant under cyclic
permutations of matrix product, and just obtained expression (5.12), we have, for
each i∈M, in case ϑ= i, that

J (i, xT−1,uT−1, Pi•(T−1)) = (5.13)

x∗T−1

(
C∗i Ci+A∗i

∑N

j=1
pij(T−1)Xj(T )Ai

)
xT−1+

2x∗T−1A
∗
i

∑N

j=1
pij(T−1)Xj(T )BiuT−1+

u∗T−1

(
D∗iDi+B∗i

∑N

j=1
pij(T−1)Xj(T )Bi

)
uT−1+∑N

i=1
tr
(

ΦiRi(T−1)Φ∗i
∑N

j=1
pij(T−1)Xj(T )

)
So, a generic cost from (5.10) at time step k = T − 1 is expressed as follows,

where the left-hand side of (5.13) may be substituted with its right-hand side.

J(ϑ, xT−1,uT−1, Pϑ•(T−1))=
∑N

i=1
pi(T−1)J(i, xk,uT−1, Pi•(T−1)) (5.14)

We notice that the probability distribution pi(T−1) (which evolves according to
(4.17)) at time step k=T−1 is independent from the transition probability values
in the same time step. So, we consider the previous equation (5.14) as a function
of only transition probabilities Pi•(T−1), examined for all i∈M, i.e., as a function
of the entire transition probability matrix

[
P[1,N ]• (T−1)

]
.

From Assumption 2.2, the transition probability matrix P (T−1) is polytopic.
It is straightforward verifying that Jensen’s inequality [102, p. 25, Theorem 4.3]
holds for the generic cost function (5.14), with the addends in the right-hand side
defined by (5.13). That is, for all λl(T−1) from (2.17) in Assumption 2.2, we have
that, by linearity and convexity of the considered expression∑N

i=1
pi(T−1)J

(
i, xT−1,uT−1,

∑V

l=1
λl(T−1)P l

i•

)
=∑V

l=1
λl(T−1)

∑N

i=1
pi(T−1)J

(
i, xk,uT−1, P

l
i•
)

Hence, this generic quadratic cost is a convex function in a variable, that belongs
to a polytopic set. From [102, p. 343, Theorem 32.2] this means that the maximum
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in transition probabilities of the quadratic cost function is attained on a vertex of
the convex polytope of transition probabilities. This vertex should be the same for
all operational modes at the considered time step k=T−1. Formally, we write that

max
Pϑ•(T−1)

J(ϑ, xT−1,uT−1, Pϑ•(T−1)) = max
Pl∈VP

J
(
ϑ, xT−1,uT−1, P

l
ϑ•
)

Then, the expression (5.11) for the cost-to-go function at k=T−1 becomes

J (ϑ, xT−1) = min
uT−1

max
Pl∈VP

∑N

i=1
pi(k)J

(
i, xT−1,uT−1, P

l
i•
)

(5.15)

So, to find the maximum in transition probability disturbances, we need to
evaluate the expectation of the generic cost J

(
ϑ, xT−1,uT−1, P

l
ϑ•
)
in each vertex

Pl∈VP of the polytopic transition probability matrix.
Since in Problem 5.1 under consideration we are interested in mode-dependent

control input, we compute the minimum in uT−1 directly on J
(
ϑ, xT−1,uT−1, P

l
ϑ•
)

by equaling to zero its derivative with respect to uT−1, obtaining that

2u∗T−1

(
D∗ϑDϑ+B∗ϑ

∑N

j=1
p lϑjXj(T )Bϑ

)
+ 2x∗T−1A

∗
ϑ

∑N

j=1
plϑjXj(T )Bϑ = 0

Thence, it follows immediately that

uT−1 = −
(
D∗ϑDϑ+B∗ϑ

∑N

j=1
p lϑjXj(T )Bϑ

)−1
B∗ϑ
∑N

j=1
p lϑjXj(T )Aϑ xT−1

So, we see that the optimal gain at time k = T − 1, considering the transition
probability vector P l

ϑ•, l∈V, ϑ∈M, is given by

Kl
ϑ(T−1) = −

(
D∗ϑDϑ+B∗ϑ

∑N

j=1
p lϑjXj(T )Bϑ

)−1
B∗ϑ
∑N

j=1
p lϑjXj(T )Aϑ (5.16)

Then, the state-feedback control input at time k=T−1 for i-th operational mode
and the same transition probability vector as before is obviously

uT−1 = Kl
i(T−1) xT−1 (5.17)

We observe that among V vertices of convex polytope of transition probability
matrices Pl, there is one, indicated by Pῡ, for which J (ϑ, xT−1) of (5.10) is attained.
We denote by K ῡ

ϑ (T−1) the corresponding optimal gain.
When for each operational mode i∈M the corresponding optimal control input

uT−1 =K ῡ
i (T−1) xT−1 is applied, we have that

Pῡ , arg max
Pl∈VP

J (ϑ, xT−1) (5.18)
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Thus, from the expression (5.14) of a generic cost at time step k=T−1, for each
vertex Pl∈VP, the last equality (5.18) implies that∑N

i=1
pi(T−1)J

(
i, xk,K ῡ

i (T−1) xT−1, P
ῡ
i•
)
≥∑N

i=1
pi(T−1)J

(
i, xk,K ῡ

i (T−1) xT−1, P
l
i•
)

(5.19)

with equality valid when the transition probability is the one of the vertex with
index ῡ. This ensures us that with Assumption 5.2 on the information structure for
the controller and the adversary satisfied in game-theoretic setting, the proposed
control input is indeed optimal for both controller and adversary, since the pertur-
bation with any value of transition probabilities different from Pῡ produces a minor
cost for the perturbation player. Consequently, in the following we define

J (i, xT−1) , J
(
i, xk,K ῡ

i (T−1) xT−1, P
ῡ
i•
)

(5.20)

so that
J (ϑ, xT−1) =

∑N

i=1
pi(T−1)J (i, xT−1)

This leads us to the following explicit expression for the cost contribution of the
i-th operational mode to cost-to-go:

J (i, xT−1)=x∗T−1X
ῡ
i (T−1)xT−1+

∑N

i=1
tr
(

ΦiRi(T−1)Φ∗i
∑N

j=1
p ῡijXj(T )

)
(5.21)

where the solution of the corresponding coupled Riccati difference equation is

X ῡ
i (T−1) , C∗i Ci+A∗i

∑N

j=1
p ῡijXj(T )Ai+A∗i

∑N

j=1
p ῡijXj(T )BiK ῡ

i (T−1) (5.22)

Since the total mass of the probability distribution of the discrete random vari-
able θk equals to one for any k∈T (see e.g., appendix’s Subsection B.6), by linearity
of the considered expressions we write the cost-to-go as

J (ϑ, xT−1) = x∗T−1

(∑N

i=1
pi(T−1)X ῡ

i (T−1)
)

xT−1+∑N

i=1
pi(T−1)tr

(
ΦiRi(T−1)Φ∗i

∑N

j=1
p ῡijXj(T )

)
(5.23)

In order to emphasize the structure of the cost-to-go function, we write the same
expression as

J (ϑ, xT−1) = x∗T−1
(
X ῡ

ϑ (T−1)
)

xT−1 + δῡ(T−1) (5.24)

where the expressions for X ῡ
ϑ (T−1) and for δῡ(T−1) are obvious from (5.23).

We underline that the cost-to-go J (ϑ, xT−1) clearly depends on xT−1, so the
value of the index ῡ can be different for distinct values of the system’s state at time
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step k=T−1. Thence, it is easy to see that we write ῡ as a compact notation for
index ῡ(xT−1). Without knowing a priori in which state system will be at time step
T−1, we need to consider all the vertices as possible candidates. So, we can have
up to V optimal gains for each operational mode i∈M at time step k = T−1, since
we need to consider all the solutions of coupled Riccati difference equations that
can achieve maximum in transition probabilities. In Subsection 5.2 we will explain
the way to reduce the number of equations to deal with, obtaining a smaller set of
solutions that we will call parsimonious set, or the set of non-redundant solutions.

The indices of the vertices of polytopic transition probability matrix for which
the solutions of CRDEs are parsimonious at a given time step k will be indicated
by υ. The cardinality of a parsimonious set of solutions, i.e., the number of its
elements, will be indicated by nυ(k).

Considering one parsimonious solution X υ
i (T−1) for each operational mode i

gives us an N -sequence of what can be seen as terminal costs for the preceding time
step, i.e., k= T−2. Thus, we can repeat exactly the same procedure of the time
step k=T−1, keeping in mind that instead of one sequence of terminal costs, now
we need to examine all nυ(k) non-redundant solutions of coupled Riccati difference
equations corresponding to each N -sequence with the same index υ. Let us index
these N -sequences by ξ. Then, the total number of sequences to consider at time
step k=T−2 is simply

nξ(T−2)=V nυ(T−1)

which without the elimination of redundant solutions (performed by following the
procedure presented in the next Subsection 5.2) would be

nξ̄(T−2)=V 2

So, by iterating this procedure for a genetic k = T − t, t∈{i∈T : i≥2, i≤T},
the number of sequences to consider is

nξ(T−t)=V nυ(T−t+1), nξ̄(T−t)=V t (5.25)

and we obtain the main result of this chapter, enunciated in the following theorem.

Theorem 5.1. An optimal solution for the robust control Problem 5.1 is given by
a sequence of control inputs (uk)T−1

k=0 such that for each k∈T, k≤T , i∈M and for
all ξ∈(i)nξ(k)

i=1 , where nξ(k)=V nυ(k+1), one has that for any given xk,

J (θk, xk) = max
ξ
Jξ (θk, xk) (5.26)

Jξ (θk, xk) = x∗k
(∑N

i=1
pi(k)Xυξ

i (k)
)

xk + δξ(k) (5.27)

pj(k+1) =
∑N

i=1
pi(k)pυξij (5.28)

X
υξ
i (k) , C∗i Ci+A∗i

∑N

j=1
p
υξ
ij Xj(k+1)Ai+A∗i

∑N

j=1
p
υξ
ij Xj(k+1)BiK

υξ
i (k) (5.29)
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K
υξ
i (k) = −

(
D∗iDi+B∗i

∑N

j=1
p
υξ
ij Xj(k+1)Bi

)−1
B∗i
∑N

j=1
p
υξ
ij Xj(k+1)Ai (5.30)

δξ(k) =
∑N

i=1
pi(k)tr

(
ΦiRi(k)Φ∗i

∑N

j=1
p
υξ
ij Xj(k+1)

)
+
∑N

j=1
p
υξ
ij δ(k+1) (5.31)

δξ(T ) , 0 (5.32)

υ = arg max
υξ
J (θk, xk)

uk = Kυ
θk

(k) xk (5.33)

Proof. By backward induction, it follows the procedure presented in the preceding
part of this section.

In what comes next, we describe a procedure that permits to discard the re-
dundant solutions to coupled Riccati difference equations, reducing the number of
equations to deal with at each iteration of the recursive algorithm.

Parsimonious set and stabilizability
We have seen from (5.25) that the number of possible solutions to coupled Ric-
cati difference equations to consider in the design of the optimal robust controller
presented in Theorem 5.1 grows exponentially with the length of the time horizon.

However, not all of those nξ̄(T−t) sequences of N solutions X ῡξ(k) to CRDEs
can ever let a related cost achieve the maximum in transition probabilities. The
subset of a set of all nξ̄(T−t) sequences of N solutions to coupled Riccati difference
equations that includes as members only those sequences of N solutions Xυξ(k)
that let the cost J (θt, xt,K

υξ
θt

(t)xt, P
υξ
θt•) of optimal control Kυξ

θt
(t)xt achieve the

maximum in transition probabilities for some state xk is sometimes called parsimo-
nious (see [105]).

Let us consider two costs J (θt, xt,K
υξ
θt

(t)xt, P
υξ
θt•) and J (θt, xt,K

ῡξ
θt

(t)xt, P
ῡξ
θt•),

both defined by (5.27). It is clear that if

J (θt, xt,K
υξ
θt

(t)xt, P
υξ
θt•)≥J (θt, xt,K

ῡξ
θt

(t)xt, P
ῡξ
θt•) ∀xt∈Fnx

then the sequence X ῡξ(k) of the solutions of coupled Riccati difference equations
that produces cost J (θt, xt,K

ῡξ
θt

(t)xt, P
ῡξ
θt•) is redundant. From the definition (5.27),

the previous expression can be rewritten explicitly as∑N

i=1
pi(k)x∗k

(
X
υξ
i (k)−X ῡξ

i (k)
)

xk + δξ(k)− δξ̄(k) ≥ 0 (5.34)

We can see from its recursive definition (5.28) that the value of pi(k) depends on
the initial probability distribution p0 and the sequence of the transition probability
matrices describing the evolution in time of this initial probability distribution.
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Thus, the probability of an operational mode i∈M is a priori unknown. Thence,
the previous equation should hold for all xk∈Fnx and for an arbitrary pi(k).

From the definition of the positive semi-definite matrices provided in appendix’s
Subsection B.4, we have that∑N

i=1
pi(k)x∗k

(
X
υξ
i (k)−X ῡξ

i (k)
)

xk ≥ 0

for all xk and for any pk if and only if

X
υξ
i (k) � X ῡξ

i (k) ∀i∈M

We need to require that also δξ(k)−δξ̄(k) ≥ 0, to be able to ensure that (5.34)
always holds. So, we say that if

∀i∈M X
υξ
i (k) � X ῡξ

i (k) ∧ δξ(k)≥δξ̄(k) (5.35)

then the N -sequence X ξ̄(k) of solutions to CRDEs is redundant and should be
discarded. If we examine all pairs of elements of a set of N -sequence of solutions
to coupled Riccati difference equations and discard all the redundant elements, we
obtain the parsimonious set of solutions.

As a final note, we observe that when the Markov jump linear system is sta-
bilizable according to Definition 3.6, after a transitory period, the finite-horizon
optimal state feedback robust solution becomes unique. From proposition (3.9)
and Theorem 3.6 on equivalence between mean square stability and exponential
mean square stability, the length of transitory period depend on how much the
joint spectral radius, associated to the second moment of the state vector through
vertices of the polytopic transition probability matrix, is smaller than 1. The expo-
nential mean square stability of the closed loop system ensures that the state space
reachable from the previous state becomes smaller and smaller, with fewer number
of possible CDREs. When the MJLS is non-stabilizable, the behavior is opposite.

5.3 Separation principle

Following the procedure of [12, pp. 132–136], it is immediate to establish the
principle of separation between estimation and control for the optimal solutions to
the robust filtering and control problems presented in Chapters 4 and 5. For the
sake of completeness, we briefly illustrate this result.

Let us consider the discrete-time polytopic time-inhomogeneous Markov jump
linear system as in (2.1) defined on the stochastic basis (Ωy,F , (Fk) ,Pr), and de-
scribed by the following dynamical system

xk+1 = Aθkxk+Bθkuk+Hθkwk,
yk = Fθkxk+Gθkwk,
zk = Cθkxk+Dθkuk,
x0 = x0, θ0 = ϑ0, p0 = p0
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where the system’s variables and matrices are those defined in Section 2.1, and the
transition probability matrix is polytopic, as stated in Assumption 2.2.

The problem of the optimal mode-dependent dynamic output feedback control
for an MJLS as in (2.1) is that of designing a controller described by the following
stochastic equations: 

x̂k+1 = Âθk(k)x̂k + B̂θk(k)yk,
uk = Ĉθk(k)x̂k,
x̂0 = x̂0

(5.36)

where x̂k is the state of the controller, with the initial state x̂0 being deterministic,
and such that the cost (5.7) is attained, i.e.,

J(θ0, x0) , min
u

max
Pθy•

∑T−1

k=0
E
(
‖zk‖22

)
+ E(x∗TZθT xT )

Combining the results of Sections 4.2 and 5.2, we obtain the optimal solution
Âi(k) = Ai+Li(k)Fi +BiK

υ
i (k),

B̂i(k) = −Li(k),
Ĉi(k) = Kυ

i (k)
(5.37)

with Li(k) provided by (4.31) in Theorem 4.5 and Kυ
i (k) from (5.33) in Theo-

rem 5.1.
This result is proved in two steps. We provide a sketch of the proof as follows.
First, we observe that from the definition (4.11) of the filtering error, one has

that
xk = x̂k + êk

From the structure (5.36) of the output feedback controller, the state space rep-
resentation (2.1) of the Markov jump linear system, the definition (4.14) of Yi(k),
and (4.34) from Lemma 4.3, we obtain that

E
(
‖zk‖22

)
= E

(
‖ẑk‖22

)
+
∑N

i=1
tr(CiYi(k)C∗i )

with
ẑk , Cθk x̂k+Dθkuk

Similarly, using also the fact (B.35) that the trace is invariant under cyclic permu-
tations of matrix product, one obtains that

E(x∗TZθT xT ) = E(x̂∗TZθT x̂T ) +
∑N

i=1
tr(ZiYi(k))

Clearly, the terms with Yi(k) do not depend on the control input uk. Therefore,
solving (5.7) is equivalent to finding

Ĵ(θ0, x̂0) , min
u

max
Pθy•

∑T−1

k=0
E
(
‖ẑk‖22

)
+ E(x̂∗TZθT x̂T )
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subject to 
x̂k+1 = Aθk x̂k +Bθkuk − Φθkvk,

ẑk = Cθk x̂k+Dθkuk,
x̂0 = E(x0) = ψ0

where
vk = yk − Lθk(k)x̂k = Lθk(k)êk +Gθk(k)wk

Then, it is immediate to verify that Assumption 5.1 verified, and

Ri(k) = Li(k)Yi(k)L∗i(k) +GiG
∗
i

This concludes our recap of the derivation of the separation principle through
the procedure from [12, pp. 132–136].

In the next chapter we present a result on optimal robust state-feedback con-
trol for discrete-time polytopic time-inhomogeneous Markov jump switched linear
systems, i.e., switched linear systems, where a switching signal is governed by a
Markov decision process instead of a Markov chain, as introduced in Section 2.4.
In chronological order, the aforementioned result was obtained before our work on
output feedback control illustrated in Chapters 4 and 5. Thus, it shares several
ideas of this chapter, and, in fact, it has helped us to develop the result in noisy
setting presented here. For this reason, we will focus on pointing out the similarities
and differences, rather than writing down the same passages for the second time.



Chapter 6

Extension to switched systems

Markov jump linear systems studied in detail in the previous chapters use
probabilistic description of commutations between operational modes and are

well suited to model exogenous uncontrollable events induced by external causes.
Their model however does not take into account the fact that a system may have
an automated mechanism or a human supervisor capable to (partially) compensate
for the effects of external disturbances.

When the actions of a supervisor are required to be optimized, it comes naturally
to use a Markov decision process framework. Considering a Markov decision process
instead of a Markov chain in a Markov jump linear system brings to light a new
type of system, that we call Markov jump switched linear system (or MJSLS).

This chapter follows the line of investigation on optimal finite time horizon
state-feedback problems in polytopic time-inhomogeneous setting presented in the
previous chapter, considering the issue of joint minimization of costs of continuous
and discrete control inputs for the worst possible disturbance in transition proba-
bilities. It is based on [4], which was presented at the 20th World Congress of the
International Federation of Automatic Control in July 2017.

In the next section, 6.1, we formally define the optimal control problem, while
in the following section, 6.2, we present an analytic solution to the aforementioned
problem. See also the appendix’s Subsection B.6 for some additional details on
Markov decision processes.

6.1 Optimal robust control problem

Let us consider the discrete-time Markov jump switched linear system (2.18) defined
on the stochastic basis (Ωs, I, (Ik) ,Pr) described in Subsection 2.4, with the switch-
ing between operational modes of the system being governed by a Markov decision
process described as in appendix’s Subsection B.6 by a quintuple (M,A,Pr, g, γ). Its
transition probabilities associated to each action available in an operational mode

85
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are polytopic time-inhomogeneous, as by Assumption 2.4. Also, all the operational
modes of the system are considered to be measurable (see Assumption 2.3).

In order to facilitate the readability of this section, we recall that the state space
representation of the system (2.18) under consideration is

xk+1 = Askxk+Bskuk
zk = Cskxk+Dskuk,
x0 = x0, s0 = s0, p0 = p0

where, as before, the system variables and matrices are those of Section 2.1.
As in the previous chapter, without loss of generality [12, Remark 4.1, p. 74],

we assume that for each i∈M the following equation (5.6) holds, i.e.,

C∗iDi = 0, D∗iDi � 0

The set of all admissible Ik-measurable controllers is denoted in the same way as
before, that is, UT, and is given by the sequence of (continuous) control laws

u , (uk)T−1
0

In addition, for each k ∈ T, we denote by πk the hybrid control pair (αk,uk),
where αk∈Ai is a (discrete) action at time instant k.

Then, the sequence π of hybrid control pairs (πk)T−1
k=0 is called hybrid control

sequence. At each time step (or decision epoch, in MDP terminology) k, a particular
choice uk of uk is called the continuous control law; similarly, αk is denominated
discrete switching control law. The pair (αk,uk) forms the hybrid control law πk,
and the sequence of hybrid control laws over the horizon T constitutes a finite
horizon feedback policy,

π , (πk)T−1
k=0 , (αk,uk)T−1

k=0

We also indicate by
pαs•,

(
pαst•(t)

)T−1
t=0

the sequence of the length T ∈ T of the transition probability row vectors pαi•(k),
with k ∈TT−1, where the elements of pαs• obviously depend on the realizations of
the Markov decision process s described in Subsection 2.4.

So, following the same line of reasoning of the previous chapter, we cast an
optimal linear quadratic state-feedback control problem for Markov jump switched
linear systems with bounded perturbations of the transition probabilities as a min-
max problem of optimizing robust performance, i.e., finding the minimum over
the finite horizon feedback policy of the maximum over the transition probability
disturbance (obtained in correspondence of the chosen feedback policy).

Thence, the problem of designing the optimal mode-dependent state-feedback
Markov jump controller, which is robust to all possible polytopic perturbations in
transition probabilities, is formally defined as follows.
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Problem 6.1. Given a discrete-time Markov jump switched linear system (2.18)
with unknown and time-varying transition probability row vectors pαi•(k)∈ VαP and
satisfying Assumption 2.4, find the mode-dependent state feedback policy π that
achieves the following optimal cost of robust control.

J(s0, x0),min
π

max
pαs•

∑T−1

k=0
E
(
‖zk‖22+g(sk, αk) | I0

)
+E(x∗TZsT xT | IT ) (6.1)

with Z,(Zi)Ni=1∈NFnx,nx
0 being a sequence of the terminal cost weighting matrices.

We remark that even if the cost g(sk, αk) of performing a discrete action αk in
an operational mode sk here is treated as time-invariant, the result will obviously
remain the same in the case of the time-varying cost g(sk, αk, k), as long as the
current value of the cost is known by the decision maker.

In the next section we provide the analytic solution to Problem 6.1, underlining
the similarities and differences with the solution to the Problem 5.1.

6.2 Analytic solution

Similarly to the case of the optimal robust control of Markov jump linear systems
described in Section 5.2, the solution to the above Problem 6.1 is based on a dynamic
programming approach in Bellman’s optimization formulation [104], and is obtained
by backward induction.

The relevant stochastic basis is (Ωs, I, (Ik) ,Pr), so xT is IT -measurable. From
the definition (6.1) of the cost of robust control and linearity of the expected value,
the terminal cost is

J(sT , xT ) = E(x∗TXsT(T )xT | IT ) = x∗TE(XsT(T ) | IT ) xT = x∗TZsT xT (6.2)

with XsT (T ) , ZsT a solution to the coupled Riccati difference equation for the
robust control at the terminal time step.

As before, we are interested in the explicit form of X(k)=(Xi(k))Ni=1∈NFnx,nx
0 .

A generic cost at time step k∈TT−1 is

J
(
sk, xk, πk,pαsk•(k)

)
= E

(
‖zk‖22 + g(sk, αk) + J (sk+1, xk+1) | Ik

)
(6.3)

while the cost cost-to-go function is defined as

J (sk, xk) = min
πk

max
pαsk•(k)

J
(
sk, xk, πk,pαsk•(k)

)
(6.4)

To improve the readability, we write s as a short notation for sk.
We start by examining the cost-to-go function (6.4) at time step k = T −1.

Clearly, at this time step s indicates sT−1.
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With the same considerations made in Section 5.2, we obtain that

E(XsT (T ) | IT−1) =
∑N

j=1
p
αT−1
sj (T−1)Xj(T ) (6.5)

J
(
s, xT−1, πT−1,pαT−1

s• (T−1)
)

=
∑N

i=1
pi(T−1)J

(
i, xT−1, πT−1,pαT−1

i• (T−1)
)

(6.6)

J
(
i, xT−1, πT−1,pαT−1

i• (T−1)
)

= (6.7)

x∗T−1

(
C∗i Ci+A∗i

∑N

j=1
p
αT−1
ij (T−1)Xj(T )Ai

)
xT−1+

2x∗T−1A
∗
i

∑N

j=1
p
αT−1
ij (T−1)Xj(T )BiuT−1+

u∗T−1

(
D∗iDi+B∗i

∑N

j=1
p
αT−1
ij (T−1)Xj(T )Bi

)
uT−1+

g(i, αT−1)

So, we can verify that J
(
s, xT−1, πT−1,pαT−1

s• (T−1)
)
is a convex function in a vari-

able pαT−1
s• (T−1) defined on a convex set. Thus,

max
p
αT−1
s• (T−1)

J
(
s, xT−1, πT−1,pαT−1

s• (T−1)
)

= max
p
αT−1
[1,N]•l∈VαP

J
(
s, xT−1, πT−1,pαT−1

s•l
)

This implies that the maximum in transition probabilities of the generic cost (6.6)
associated to a discrete control action αT−1 is attained on a vertex of the convex
polytope of transition probabilities, all related to the same operational mode s.

Hence, to find the maximum in transition probability disturbances of the mini-
mum in available discrete actions, we need to evaluate the expectation of the generic
cost (6.6) in each vertex pαT−1

[1,N ]•l ∈ VαP, for every available action αT−1∈As.
For each of those actions and vertices we compute the optimal continuous control

input as in Section 5.2, finding that

uT−1 = K
αT−1
sl (T−1) xT−1 (6.8)

K
αT−1
sl (T−1) = −

(
D∗sDs+B∗s

∑N

j=1
p
αT−1
sjl Xj(T )Bs

)−1
B∗s
∑N

j=1
p
αT−1
sjl Xj(T )As (6.9)

At this point, following the same line of reasoning of Section 5.2, for each discrete
action α ∈ As, we denote the vertex, which maximizes in transition probabilities
the generic cost (6.6), as

pαT−1
[1,N ]•ῡ , arg max

p
αT−1
[1,N]•l

J (s, xT−1, αT−1) (6.10)
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Then, we have that for each l∈Vα∑N

i=1
pi(T−1)J

(
i, xT−1, αT−1,K

αT−1
iῡ (T−1)xT−1,pαT−1

i•ῡ
)
≥∑N

i=1
pi(T−1)J

(
i, xT−1, αT−1,K

αT−1
iῡ (T−1)xT−1,pαT−1

i•l
)

(6.11)

with equality valid when the transition probability is the one of the vertex with
index ῡ. Consequently, in the following we define

J (i, xT−1, αT−1) , J
(
i, xk, αT−1,K

αT−1
iῡ (T−1)xT−1,pαT−1

i•l
)

(6.12)

J (s, xT−1, αT−1) =
∑N

i=1
pi(T−1)J (i, xT−1, αT−1)

Thence, we obtain that

J (i, xT−1, αT−1) = x∗T−1X
αT−1
iῡ (T−1)xT−1 + g(i, αT−1) (6.13)

X
αT−1
iῡ (T−1) , C∗i Ci +A∗i

∑N

j=1
p
αT−1
ijῡ Xj(T )Ai+ (6.14)

A∗i
∑N

j=1
p
αT−1
ijῡ Xj(T )BiKαT−1

iῡ (T−1)

So that

J (s, xT−1, αT−1) = x∗T−1

(∑N

i=1
pi(T−1)XαT−1

iῡ (T−1)
)

xT−1+ (6.15)∑N

i=1
pi(T−1)g(i, αT−1)

Then, the cost-to-go is

J (s, xT−1) = min
αT−1∈As

J (s, xT−1, αT−1) (6.16)

Clearly, due to the dependence on system’s state, all parsimonious solutions should
be considered and stored in memory. For each discrete action, a parsimonious set of
vertices is obtained as in Subsection 5.2. Obviously, if all the parsimonious solutions
of coupled Riccati equations related to an action produce a cost that is larger than
a cost of each non redundant solution for another action, the first action is not
optimal and can be removed from the pool of possible solutions at the considered
time step.

Let us indicate by nα the number of parsimonious actions, i.e., those actions
that may produce a minimum cost for a certain partition of state space, and by
nυa(k) the cardinality of a parsimonious set of solutions of coupled Riccati equations
associated to a parsimonious action. As before, we index all these solutions by ξ.

Then, by iterating the presented procedure for a genetic k = T − t, where
t∈{i∈T : i≥2, i≤T}, we obtain that the total number of N -sequences of solutions
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to coupled Riccati difference equations (for a total of M possible discrete actions)
to consider is

nξ(T−t)=MV
∑nα

i=1
nυi(T−t+1), nξ̄(T−t)=(MV )t (6.17)

(where nξ̄(T−t) is a number of sequences to deal with, when the pruning of redun-
dant solutions is not performed); hence, the number of N -sequences of solutions to
coupled Riccati difference equations to deal with for each discrete action αk is

nξ(T−t, αk)=V
∑nα

i=1
nυi(T−t+1) (6.18)

and we obtain the main result of this chapter, stated in the following theorem.

Theorem 6.1. An optimal solution for the robust control Problem 6.1 is given by
the mode-dependent hybrid control sequence (αk,uk)T−1

k=0 such that for each k ∈T,
k≤T , i∈M and for all ξ∈(i)nξ(k,αk)

i=1 , where nξ(k, αk) is obtained from (6.18), one
has that for any given xk,

J (sk, xk) = min
αk∈Ask

J (sk, xk, αk) (6.19)

J (sk, xk, αk) = max
ξ
Jξ (sk, xk, αk) (6.20)

Jξ (sk, xk, αk) = x∗k
(∑N

i=1
pi(k)Xαk

iυξ
(k)
)

xk + gξ(k) (6.21)

pj(k+1) =
∑N

i=1
pi(k)pαkijυξ (6.22)

Xαk
iυξ

(k) ,C∗i Ci+A∗i
∑N

j=1
pαkijυξXj(k+1)Ai+ (6.23)

A∗i
∑N

j=1
pαkijυξXj(k+1)BiKαk

iυξ
(k)

Kαk
iυξ

(k)=−
(
D∗iDi+B∗i

∑N

j=1
pαkijυξXj(k+1)Bi

)−1
B∗i
∑N

j=1
pαkijυξXj(k+1)Ai (6.24)

gξ(k) =
∑N

i=1
pi(k)g(i, αk) +

∑N

j=1
pαkijυξg(k+1) (6.25)

gξ(T ) , 0 (6.26)

υ = arg max
υξ
J (sk, xk)

uk = Kα
skυ

(k) xk (6.27)

Proof. By backward induction, it follows the procedure presented in the preceding
part of this section.



Chapter 7

Conclusions and future work

This thesis presents our original contributions to stability theory and optimal
control of a class of stochastic hybrid systems, known as discrete-time Markov

jump linear systems, putting a specific focus on dealing with abrupt and unpre-
dictable dynamic perturbations of transition probabilities between the operational
modes of such systems.

Our interest in this particular systems is inspired by their applications as pos-
sible models for wireless networked control systems and cyber-physical systems,
especially in the view of ongoing efforts made by academia and industry in devel-
oping a fifth generation of mobile technology (5G), which also uses models based on
Markov chains and is expected to meet the requirements of ultra-reliable low-latency
communications for factory automation and safety-critical internet of things.

To motivate the necessity of studying the characteristics of Markov jump linear
systems with dynamic perturbations on values in transition probability matrix we
show in Chapter 3 that a stable system assumed to have time-invariant transition
probability matrix may become unstable, if subject to bounded dynamic perturba-
tions. This happens even in case when the Markov jump linear system is robust to
static uncertainties in transition probabilities.

In order to account for uncertainties and time-variance inherent to real world
scenarios, we use the time-inhomogeneous polytopic model of transition probabili-
ties, which is very general and widely used.

Then, as a technical contribution to stability theory, we derive the necessary and
sufficient conditions for the mean square stability of discrete-time polytopic time-
inhomogeneous Markov jump linear systems, and prove that deciding mean square
stability on such systems is NP-hard and that mean square stability is equivalent
to exponential mean square stability and to stochastic stability. We also obtain the
necessary and sufficient conditions for the robust mean square stability of Markov
jump linear systems affected by both dynamic polytopic uncertainties on transition
probabilities, and bounded disturbances of system states. Our conditions are based
on the notion of the joint spectral radius, which is applied to a family of matrices
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associated to the second moment of the state vector.
For what regards our contribution to the optimal control theory, it is the fol-

lowing. We formally define and solve the problem of the optimal filtering, which is
robust to the bounded dynamic perturbations of the transition probability matrices
of Markov jump linear systems. Then we also properly define and solve the problem
of the optimal linear quadratic state-feedback control that is robust to the poly-
topic time-inhomogeneous uncertainties on the values of the transition probability
matrices. Everything is done in a way that a principle of separation of estimation
and control holds true, and the optimal output feedback controller may be obtained
consequently.

Lastly, we extend the optimal linear quadratic state-feedback control result to
so-called Markov jump switched linear systems, in which the switching between
operational modes is based on the Markov decision process framework, where the
(polytopic time-inhomogeneous) transition probabilities depend on the actions of a
discrete controller, and for each action there is an associated cost.

7.1 Future work

There are several research directions on both theoretical foundations and practi-
cal application of Markov jump (switched) linear systems with dynamic bounded
uncertainties in transition probabilities.

First of all, in a typical Markov jump linear systems framework, the operational
modes are assumed to be measurable and immediately available to the controller.
In the wireless control scenario this assumption may not hold true, since the oper-
ational modes may become available to the controller with some time delay. Also,
the jump variable could be obtained via an estimation procedure. In this case, the
estimation error should be taken into account.

Then, it is natural to go beyond the issues of the stability and optimal control,
and we are particularly interested in the topics of fault detection, isolation and
reconfiguration, and in formal verification and synthesis, in relation to the Markov
jump (switched) linear system models.

Notably, in the domain of cyber-physical systems, the reactive security mech-
anisms, i.e., intrusion detection, automatic response and recovery [5], can exploit
fault detection, isolation and reconfiguration techniques [106], by relaxing some
assumptions on fault signals. In general, this type of methods utilize the concept
of redundancy, which can be either a hardware redundancy or analytic one. This
often poses a challenge of controlling, coordinating and synchronizing the operation
of several interacting sub-modules within a system. Reconfiguration task, and not
just it, may have objectives expressed in temporal logic, which provides a formal
specification mechanism allowing one to quantitatively define the desired behavior
of a systems by prescribing the interaction between sub-modules. In fact, formal
methods [107] are increasingly being used for control and verification of dynamic
systems against complex specifications [108–110]. Here, abstraction and composi-
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tional verification are key to handling complexity in verification [36]. In particular,
a probabilistic computation tree logic [111] (PCTL) is widely adopted to write
specifications of Markov chains and Markov decision processes with possibly time-
varying uncertainties on transition probabilities, with structures that often can be
reconducted to polytopes.

So, one important research direction is on correct-by-design fault detection, iso-
lation and reconfiguration solutions for polytopic time-inhomojeneous Markov jump
switched linear system, satisfying PCTL specifications (possibly on approximate
with explicit bound bisimilar abstractions preserving the properties of interest).





Appendix A

Abbreviations and initialisms

In this section we explicit all the main abbreviations and initialisms used through-
out the text.

A.1 Abbreviations

For the sake of conciseness, through the text of the thesis, we use a number of
abbreviations reported in the following Table A.1.

Abbrev. Meaning

abbrev. abbreviation
a.k.a. also known as
commun. communications
comput. computer
conf. conference
dist. distribution
DoS denial-of-service
etc. et cetera (Latin phrase); it means "and other similar things",

"and so forth".
e.g. exempl̄ı grātiā (Latin phrase); it signifies "for example"
i.e. id est (Latin phrase); it stands for "that is", "in other words"
inf. information
int. international
iff if and only if
NP non-deterministic polynomial-time
resp. respectively
s.t. such that
trans. transactions

Table A.1: Main abbreviations used in the text
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A.2 Initialisms

In order to improve the readability of the thesis, we use a number of initialisms
(i.e., abbreviations consisting of initial letters pronounced separately) listed and
described in the following Table A.2.

Acronym Meaning

BDD bad data detection
BRL bounded real lemma
CPS cyber-physical system
CRDE coupled Riccati difference equation
EMSS exponential mean square stability
IEEE Institute of Electrical and Electronics Engineers
IT information technology
JSR joint spectral radius
KL Kullback–Leibler
LHS left-hand side (of the mathematical expression)
LMI linear matrix inequality
LQG linear-quadratic-Gaussian
LQR linear-quadratic regulator
LTI linear time invariant
MJLS Markov(ian) jump linear system
MJSLS Markov(ian) jump switched linear system
MDP Markov decision process
MPC model predictive control
MSS mean square stability
NCS networked control system
PCA principal component analysis
PCTL probabilistic computation tree logic
PID proportional-integral-derivative
PTI polytopic time-inhomogeneous
RHS right-hand side (of the mathematical expression)
RQ research question
SCADA supervisory control and data acquisition
SE state estimation
SIAM Society for Industrial and Applied Mathematics
SMT satisfiability modulo theory
SS stochastic stability
TP transition probability
TPM transition probability matrix
WLS weighted least squares

Table A.2: Main acronyms used in the thesis



Appendix B

Mathematical background

The results presented in this thesis rely on several notions from different branches
of mathematics, including set theory, linear algebra, and probability theory.

In order to render the text self-sufficient and accessible to a broad audience, in this
section we recall all the concepts and properties necessary to understand and prove
the results of our work. Our treatment is theoretically oriented, with the focus on
the notation.

B.1 Notational Conventions

A number of special notational conventions are used throughout this text.
As a general rule, sets and spaces are denoted by blackboard uppercase charac-

ters (such as Z, R). Uppercase Greek and Roman letters are used for cardinality of
finite sets (i.e., a number of elements of a finite set), as well as for matrix variables
and functions, while lowercase Greek and Roman letters are used for both scalar
and vector variables and functions. Boldface letters generally indicate sequences of
N matrices or vectors, where N is the number of operational modes of the system.

Sometimes it is not possible or convenient to adhere completely to this rules,
but the exceptions should be clearly perceived based on their specific context.

B.2 Sets of numbers

Numbers are mathematical objects used to count, measure and label [112] con-
crete or abstract things. Different types of numbers have many different uses, e.g.
counting numbers are useful as labels, while complex numbers play a central role
in quantum mechanics [112]. Depending on the intended use, numbers can be clas-
sified into sets, which we present first. Then, we introduce a set-builder notation
used through this thesis, followed by recurrent sets derived from the standard sets of
numbers, and some additional notation peculiar to the real and complex numbers.
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Standard sets of numbers

A set is a well-defined collection of distinct objects, concrete or abstract, considered
as an object in its own right. The objects that make up a set are called elements or
members. The number of members (possibly infinite) of a set is known as cardinality
and is denoted by | · |. A set is finite if it has a finite cardinality, and it is countable
if the number of elements is countable, that is, if one can label them by the positive
integers in such a manner that no element remains unlabeled. An example of
an infinite countable set is a set of all integers, denoted by Z, which is one of the
standard sets of numbers. Standard sets of numbers used in this thesis are reported
in the following Table B.1.

Symbol Meaning

Z Set of integers
Q Set of rational numbers
R Set of real numbers
C Set of complex numbers

Table B.1: Standard sets of numbers used in this thesis

All sets derived from the standard sets of numbers, and other more abstract
sets of mathematical objects are defined through a set-builder notation.

Set-builder notation

We use a set-builder notation to define sets. For the sake of conciseness and clar-
ity, we define sets via a predicate, rather than by explicitly enumerating the set’s
elements. In this form, set-builder notation has three parts: a variable with its
domain of appurtenance, a colon, and a logical predicate. These three parts are
contained in curly brackets. As an example, a set of non-negative integers can be
declared as

Z0,{i∈Z : i≥0}

where the symbol ∈ denotes the set membership, indicating that an element belongs
to a set. See Appendix C for additional details on mathematical symbols used
throughout the thesis.

In accordance with the set-builder notation, the (unique) set having no elements
is denoted by {} and is called the empty set; its cardinality is zero.

Set operations and terminology

Just as real (or complex) numbers can be added or multiplied, there exist operations
on sets [113, pp. 3–4]. Let Ω, Si (with i∈Z, i>0) be (generic) sets.
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The union of two sets S1 and S2 is the set of elements which are in S1, in S2,
or in both S1 and S2. Formally, for any domain of appurtenance of a variable x,

S1 ∪ S2 , {x : x ∈ S1 ∨ x ∈ S2}

Clearly, the symbol ∨ indicates a logical disjunction. The statement S1 ∨S2 is true
if S1 or S2 (or both) are true; if both are false, the statement is false.

The intersection of two sets S1 and S2 is the set that contains all elements of
S1 that also belong to S2, but no other elements. In symbols, for any domain of
appurtenance of a variable x,

S1 ∩ S2 , {x : x ∈ S1, x ∈ S2} = {x : x ∈ S1 ∧ x ∈ S2}

Obviously, the comma in this context indicates a logical conjunction, which can
also be denoted by ∧. The statement S1 ∧ S2 is true if S1 and S2 are both true;
else it is false.

We also use standard notations such as
⋃n
i=1 Si and

⋂∞
i=1 Si for unions and

intersections of finitely or countably many sets [113, p. 4].
The complement of a set Ω is denoted by ΩC and refers to elements not in Ω.

For any domain of appurtenance of a variable x, we express the complement of a
set Ω in set-builder notation as

ΩC , {x : x 6∈ Ω}

The difference of sets S1 and S2, written S1\S2, also termed the relative com-
plement of a set S2 with respect to a set S1, is the set of elements in S1 but not in
S2. Formally, for any domain of appurtenance of a variable x,

S1\ S2 , S1 ∩ SC
2 = {x : x ∈ S1 ∧ x 6∈ S2}

The symmetric difference, also known as the disjunctive union, of two sets is
the union of both relative complements. The symmetric difference of the sets S1
and S2 is commonly denoted by S14S2. In symbols,

S14 S2 , (S1\ S2) ∪ (S2\ S1)

Through this thesis we use some set-theoretic terms, which are introduced in
the rest of this subsection.

A set S is a subset of a set Ω, denoted by S ⊆ Ω, or equivalently Ω is a superset
of S, written as Ω ⊇ S, if S is "contained" inside Ω, i.e., all elements of S are also
elements of Ω. Sets S and Ω may coincide. The relationship of one set being a
subset of another is called inclusion or sometimes containment. Formally,

S ⊆ Ω if x ∈ S⇒ x ∈ Ω

The symbol ⇒ denotes the material implication. The statement S1⇒S2 means
that if S1 is true then S2 is also true; if S1 is false then nothing is said about S2.

The subset relation defines a (non-strict) partial order on sets, i.e., the inclusion
is reflexive, antisymmetric, and transitive. Formally, for all (generic) sets Ω, Si
(with i∈Z, i>0), it satisfy the following properties.
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• Reflexivity: every set is related to itself, i.e.,

Ω⊆Ω

• Antisymmetry: two distinct sets cannot be related in both directions, that is,

S1⊆S2 ∧ S2⊆S1 ⇒ S1 =S2

• Transitivity: if a first set is related to a second set, and, in turn, that set is
related to a third set, then the first set is related to the third set. Formally,

S1⊆S2 ∧ S2⊆S3 ⇒ S1⊆S3

Two sets are said to be disjoint if they have no element in common. Equivalently,
disjoint sets are sets whose intersection is the empty set. Formally, we write that
sets S1 and S2 are disjoint if S1∩ S2 = {}.

The power set of any set Ω is the set of all subsets of Ω, including the empty
set and Ω itself. We denote the power set of a set Ω by the set of all functions from
Ω to a given set of two elements, 2Ω. This notation is motivated by the fact that
for a finite set Ω with cardinality |Ω|, the cardinality of the power set is 2|Ω|. This
statement can be easily proved through the application of the indicator function
(also known as a characteristic function) of the subset to each element of the set Ω.

Formally, for any set S⊆Ω, we define the indicator function 1S : S→{0, 1} in
the usual way [12, p. 31], that is, ∀ω∈S

1S(ω) ,
{

1 if ω ∈ S
0 if ω 6∈ S

(B.1)

If we order the elements of Ω in any manner, we can write any subset S of Ω in
the format

{
1S(ω1) ,1S(ω2) , . . . ,1S

(
ω|Ω|

)}
. Clearly, the number of distinct subsets

that can be constructed in this way is 2|Ω| as 1S(ωi)∈{0, 1}, ∀i∈Z, i≥1, i≤|Ω|.
The power set of a set Ω is formally defined as

2Ω , {S : S ⊆ Ω}

See Section B.5 for the related notions of sequences, limits and collections of
sets, together with the fields of sets.

Sets derived from the standard sets of numbers

In order to render our notation more succinct and simple, we define recurrent
subsets of standard sets of numbers as follows.
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Symbol Meaning

Z0 Set of nonnegative integers, i.e., {i∈Z : i≥0}
Z+ Set of positive integers, i.e., {i∈Z : i>0}
R0 Set of nonnegative real numbers, i.e., {i∈R : i≥0}
R+ Set of positive real numbers, i.e., {i∈R : i>0}
F Set of either real or complex numbers

Table B.2: Sets derived from the standard sets of numbers

Notation peculiar to the real and complex numbers

Any complex number can be expressed in form x = a+ ıb, where a, b ∈ R, and ı
indicates the imaginary unit, which satisfies ı2 =−1. The real number a is called
the real part of a complex number x, and is denoted by Re(x). Similarly, the real
number b is referred to as the imaginary part of a complex number x, and is denoted
by Im(x). The complex conjugate of x∈C, i.e., a complex number a−ıb, is indicated
by x̄ (read "x-bar", from overbar drawn above the text).

Both real and complex numbers can be used in different types of measurements,
all of which are closely related to the idea of distance. The distance from a number
to the origin is given by the absolute value of that number (along the real number
line, for real numbers, or in the complex plane, for complex numbers). More gen-
erally, the absolute value of the difference of two real or complex numbers is the
distance between them.

The absolute value (sometimes referred to as modulus) of either real or complex
number is denoted by | · |.

For any real number x, the absolute value | · | : R→R0 is defined as

|x| ,

{
x, if x ≥ 0
−x, if x < 0

(B.2)

For any complex number x=a+ıb, the absolute value | · | : C→R0 is defined by

|x| ,
√

[Re(x)]2 + [Im(x)]2 =
√
a2 + b2 =

√
xx̄

Clearly, the absolute value is a norm on a 1-dimensional vector space F.

B.3 Complete normed linear spaces

As a rule, we assume the most important notions and results of linear algebra
to be known. See for instance [114], [115], [116] as textbooks on the topic. In
the following, we summarize only some essential concepts, with the focus on our
notation.



102 APPENDIX B. MATHEMATICAL BACKGROUND

Linear spaces
A linear space (also called a vector space, denoted for instance by X or by Y) is
a collection of objects called vectors, which may be added together and multiplied
("scaled") by numbers, called scalars in this context. Linear spaces are the subject
of linear algebra and are well characterized by their dimension, which, roughly
speaking, specifies the number of independent directions in the space. One widely
known example of a linear space is three-dimensional Euclidean space defined on
Cartesian coordinate system, which is denoted by R3.

The basic operations (in infix notation) used to perform calculations on linear
spaces are reported in Table B.3.

Symbol Meaning

× Cartesian product; it returns a product set of all ordered pairs; it is
used in definition of linear spaces, which are domains of our
functions, e.g. R3 =R×R×R, and X×Y={(x, y) : x∈X, y∈Y}

+ addition (uses plus symbol), e.g x+y, ∀x, y∈X
− subtraction (uses minus sign), e.g. x−y, ∀x, y∈X

scalar multiplication (uses juxtaposition), e.g. ax, ∀x∈X, a∈F

Table B.3: Basic operations for (definition of, and) calculations on linear spaces

Normed linear spaces
We are interested in normed linear spaces, i.e., vector spaces on which a norm is
defined. Norm is a (continuous) function that assigns a strictly positive length or
size to each vector in a linear space (save for the zero vector, which is assigned a
length of zero):

‖ · ‖ : X→R0

For any given norm, the triangle inequality holds, i.e., taking norms as distances,
the shortest distance between any two points is a straight line. Formally,

‖x+y‖≤‖x‖+‖y‖, ∀x, y∈X (B.3)

This property is sometimes referred to as being subadditive.
Another property defining any given norm is absolute homogeneity (a.k.a. ab-

solute scalability), stating that ∀c∈F, x∈X

‖cx‖ = |c| ‖x‖ (B.4)

We remind that any norm ‖ · ‖ induces a metric (a notion of distance) and
therefore a topology on a linear space X. This metric is defined in the natural way:
the distance is a function dX : X×X→R0 between any two vectors x and y in X,
which is given by ‖x−y‖. This topology is precisely the weakest topology which
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makes ‖ · ‖ continuous and which is compatible with the linear structure of X.
Notably, the topology is defined so as to capture a particular notion of convergence
of sequences of objects.

Sequences defined by position and by recursion

It is worth recalling that a sequence is an enumerated collection of objects in which
repetitions are allowed. Like a set, it contains members (also called elements,
or terms). The number of elements (possibly infinite) is called the length of the
sequence. Unlike a set, order matters, and exactly the same elements can appear
multiple times at different positions in the sequence.

In this thesis, we are dealing with discrete-time signals (and their linear trans-
formations), which are time series consisting of sequences of quantities (vectors,
and linear maps between vectors). Formally, such a sequence can be defined as a
function whose domain is either the discrete-time set T (corresponding to the set
of the natural numbers, for infinite sequences) or the bounded discrete-time set Tk
(which basically is the set of the first k natural numbers, for a sequence of finite
length k+1). The variable k∈Z0 is called discrete-time instant (which is an index
of the sequence, and the set of values that it can take is generally called the index
set). Formally,

T , Z0 (B.5)

Tk , {i∈T : i≤k} (B.6)

When the elements of a sequence are defined as a function of their position, the
sequence is denoted by the indexed element of the sequence in round brackets, e.g.

(xk), xk∈X, k∈T

This convention permits us to denote the empty sequence as (), and to state the
first and the last elements of the sequence explicitly as

(xk)∞k=0

For sequences whose elements are related to the previous elements in a straight-
forward way, we also use an alternative notation based on recursion, e.g.

xk=f(xk−1), f : R2→R2, x0 =(a, b), a, b∈R

It is worth noting that in computer science, finite sequences are sometimes called
strings, words or lists, the different names commonly corresponding to different ways
to represent them in computer memory; infinite sequences are called streams.
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Convergent sequences, Cauchy sequences, Banach spaces
An important property of a sequence is convergence. If a sequence converges, it
"tends to" a particular finite value known as the limit, i.e., elements of the sequence
become closer and closer to the limit value. If such a limit exists, the sequence is
called convergent. A sequence that does not converge is divergent.

Formally, we define a vector x of a normed linear space (X, ‖ · ‖) as the limit of
the sequence (xk), if

∀ε∈R+ ∃L∈R0 : ∀k∈T, k>L, ‖xk−x‖<ε

We denote the limit value as
x , lim

k→∞
xk

Of particular interest for our work are Cauchy sequences, whose elements become
arbitrarily close to each other as the sequence progresses. More formally,

∀ε∈R+ ∃L∈Z+ : ∀k, t∈T, k, t>L, ‖xk−xt‖<ε

Cauchy sequences are necessary for the definition of complete metric spaces
(a.k.a. Cauchy spaces). Specifically, a normed linear space X is called complete if
every Cauchy sequence of vectors in X has a limit that is also within the space X.
Such complete normed linear space is also called the Banach space.

The vector space structure of a Banach space X allows us to relate the behavior
of Cauchy sequences (xk) in X to that of (absolutely) converging series of vectors.

Series, summation, absolute convergence of sequences
We recall that the series generated by (xk) is the sequence(∑t

k=0
xk
)∞
t=0

As usual, the summation symbol
∑

indicates the addition of a sequence of terms,∑t

k=0
xk=x0+x1+· · ·+xt−1+xt

The addends of summation are added sequentially from left to right. Any interme-
diate result is called a partial sum (or prefix sum, or running total). We recall that
summation notation supports two special cases, to sum up less than two addends.
Specifically, if the summation has only one addend x, then the evaluated sum is x.
If the summation has no addends, then the evaluated sum is zero (vector), because
zero is the identity for addition. This is known as the empty sum.

For convergent series, we have that there exists a limit of corresponding sequence
of partial sums. It is given by

lim
t→∞

∑t

k=0
xk =

∑∞

k=0
xk <∞
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It is well known (see [117, Proposition 1.3.7]) that

if
∑∞

k=0
xk converges in X, then lim

k→∞
xk=0 (B.7)

This result is obtained immediately from the fact that if
∑∞
k=0 xk is a convergent

series in X, then each xk besides the first is the difference of two consecutive terms
of the Cauchy sequence of partial sums of the series. Of course, the converse of
(B.7) is not in general true since the harmonic series

∑∞
k=1

1
k diverges.

Another useful result reported in [117, Proposition 1.3.7] follows from the re-
peated applications of the triangle inequality (B.8) and from the continuity of the
norm function. It states that for t≤∞

if
∑t

k=0
xk in X, then ‖

∑t

k=0
xk‖≤

∑t

k=0
‖xk‖ (B.8)

It worth noting that the sum
∑∞
k=0 ‖xk‖ in (B.8) does not have to be finite when∑∞

k=0 xk is a convergent infinite sum.
If
∑∞
k=0 ‖xk‖ converges, then the series

∑∞
k=0 xk is called absolutely convergent.

The absolute convergence of a series in a normed linear space X implies the
convergence of a series in X. Besides, a normed linear space X is a Banach space if
and only if each absolutely convergent series in X converges.

Equivalent vector norms
In this text, we are dealing with finite-dimensional linear spaces, for which all
norms are equivalent [118, Theorem 4.27] from a topological viewpoint, as they
induce the same topology (although the resulting metric spaces need not be the
same). Formally, any two norms ‖·‖1, ‖·‖2 in a vector space X are equivalent, if

∃c1∈R+,∃c2∈R+ : ‖x‖1≤c2 ‖x‖2 , ‖x‖2≤c1 ‖x‖1 , ∀x∈X (B.9)

The notable (equivalent) vector norms we are dealing with in this thesis are all
variants of p-norms (a.k.a. Lp-norms) for finite-dimensional linear spaces.

For all x∈Fn, i.e., x =
[
x1 x2 · · · xn

]
, xi ∈F, and for each p∈R+, p≥ 1, a

p-norm of x [116, p. 274] is defined as

‖x‖p ,
(∑n

i=1
|xi|p

) 1
p

The Euclidean norm in this context is a p-norm, with p=2. Notably, ∀x∈Fn

‖x‖2 ,

√∑n

i=1
|xi|2 (B.10)

Similarly, the grid norm (a.k.a. Manhattan or taxicab norm) is a p-norm, with
p=1. Curiously, the name relates to the distance a taxi has to drive in a rectangular
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street grid to get from the origin to the point x. For all x∈Fn, the 1-norm is defined
as

‖x‖1 ,
∑n

i=1
|xi| (B.11)

Finally, as p tends to infinity the p-norm approaches the maximum norm, i.e.,
∀x∈Fn, i, n∈Z+, i≤n,

‖x‖∞ = ‖x‖max , max
i
|xi| (B.12)

The finite-dimensional linear spaces defined over Fn, with equivalent Lp norms
defined as above, are sometimes called Lebesgue spaces.

We observe that completeness of a normed linear space is preserved if the
given norm is replaced by an equivalent one. Furthermore, every finite-dimensional
normed space over Fn is a Banach space [117, Corollary 1.4.19].

Hilbert spaces and inner products
A Hilbert space is a (real or complex) Banach space, possessing the structure of an
inner product, and having the distance function induced by this inner product. For
any linear space X, the inner product, is a function 〈 · , · 〉 : X×X→F that satisfies
the following three axioms for all vectors x, y, z∈X and all scalars a∈F:

1. Conjugate symmetry, i.e.,

〈 x , y 〉 =〈 y , x 〉 (B.13)

2. Linearity in the first argument:

〈 ax , y 〉 = a〈 x , y 〉 (B.14a)

〈 x+y , z 〉 = 〈 x , z 〉+ 〈 y , z 〉 (B.14b)

3. Positive-definiteness:
〈 x , x 〉 ≥ 0 (B.15a)

〈 x , x 〉 = 0 ⇐⇒ x = 0 (B.15b)

where, with a slight abuse of notation, we denote by 0 either a scalar number zero
in F, or a vector of all zeros of appropriate size.

Notably, the space L2, i.e., a finite-dimensional Banach space defined on Fn,
equipped with the Euclidean norm as in (B.10), is a Hilbert space.

B.4 Linear maps, matrices and related operations

For X and Y either real or complex Banach spaces, we set B(X,Y) the (Banach)
space of all (bounded) linear operators of X into Y, with the uniform induced norm
represented by ‖·‖. In this section we show that linear operators can be represented
by matrices, and recall a number of useful operations on matrices.
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Linear operators
We recall that linear operators (also called linear transformations, linear maps or
linear mappings) are continuous functions L : X→Y between two linear spaces that
preserves the operations of addition and scalar multiplication, i.e., ∀x, x1, x2∈X and
a∈F the following two conditions are satisfied:

L(x1 + x2) = L(x1) + L(x2) (B.16a)

L(ax) = aL(x) (B.16b)

For any normed linear spaces X and Y, and any linear operator L(·) : X→Y,
the following statements are equivalent [117, Theorem 1.4.2]:

1. The operator L(·) is continuous.

2. The operator L(·) is continuous at 0, and uniformly continuous on X.

3. The operator L(·) is bounded.

4. For some neighborhood U of 0 in X, the set L(U) is bounded in Y.

5. There is L∈R0 s.t. ‖L(x)‖≤L‖x‖ for each x in X.

6. The quantity sup{‖L(x)‖ : x∈X, ‖x‖≤1} is finite.

Let X and Y be normed linear spaces. For each linear transformation L(·) in
B(X,Y), the operator norm is a function ‖ · ‖ : B(X,Y)→R0, defined by

‖L(·)‖=sup{‖L(x)‖ : x∈X, ‖x‖≤1} (B.17)

Let X, Y be normed vector spaces. Then B(X,Y) is a normed linear space under
the operator norm. If Y is a Banach space, then so is B(X,Y) [117, Theorem 1.4.8].

Transformation matrices
In linear algebra, linear operators can be represented by matrices.

A matrix (plural matrices) is a rectangular array of numbers, symbols, or math-
ematical expressions arranged in rows and columns. A matrix with m rows and n
columns is said to be an m×n (read "m-by-n") matrix. Clearly, m,n ∈ Z+. The
individual items in an m×n matrix A are denoted by aij where max i = m and
max j=n, are called its elements or entries. In this thesis, we use square brackets
to contain constituent elements of a matrix, i.e.,

A=[aij ]=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn
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where, as usual, · · · ,
... and

. . . indicate omitted values from a pattern.
In what follows, it will be useful to be able to indicate concisely specific rows,

columns and submatrices of any given matrix.
We denote by Ai• the i-th row of a matrix A=[aij ]∈Fm,n. Specifically, for all

i,m∈Z+, i≤m,
Ai• = (aij)nj=1 =

[
ai1 ai2 · · · ain

]
(B.18)

This notation is readily extended to denote submatrices obtained from the orig-
inal matrix by taking a number of consecutive rows.

We indicate by A[i,i+d]• the submatrix of A = [aij ] ∈ Fm,n containing d+ 1
consecutive rows, starting from Ai•. Explicitly, ∀i, d,m∈Z+, i+d≤m,

A[i,i+d]•=
(

(asj)nj=1

)i+d
s=i

=


ai1 ai2 · · · ain

a(i+1)1 a(i+1)2 · · · a(i+1)n
...

...
. . .

...
a(i+d)1 a(i+d)2 · · · a(i+d)n

 (B.19)

Clearly, this notation allows us to denote the matrix A∈Fm,n as A= [A[1,m]•],
underlining the fact that in this case the matrix A is interpreted row by row.

Then, we indicate by A•j the j-th column of a matrix A=[aij ]∈Fm,n. Formally,
for all j, n∈Z+, j≤n,

A•j = (aij)mi=1 =


a1j
a2j
...

amj

 (B.20)

The extension to denote submatrices obtained from the original matrix by taking
a number of consecutive columns is straightforward.

We denote by A•[j,j+d] the submatrix of A = [aij ] ∈ Fm,n consisting of d+1
consecutive columns, starting from A•j . Formally, ∀j, d, n∈Z+, j+d≤n,

A•[j,j+d] =((ais)mi=1)j+d
s=j =


a1j a1(j+1) · · · a1(j+d)
a2j a2(j+1) · · · a2(j+d)
...

...
. . .

...
amj am(j+1) · · · am(j+d)

 (B.21)

Obviously, this notation allows us to write the matrix A∈Fm,n as A=[A•[1,n]],
emphasizing the interpretation of the matrix A column by column.

Evidently, when m=1, we have n-dimensional row-vectors, and when n=1, we
deal with m-dimensional column-vectors. When both m, and n are equal to 1, the
matrix is actually a (scalar) number. Thus, we can use matrices to represent both
elements of (finite-dimensional) normed linear spaces and linear transformations
between such normed linear spaces.
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Notably, if L : Fn→ Fm is a linear operator, and x ∈ Fn is a column vector,
then L(x)=Ax, for some m×n matrix A, called the transformation matrix of L(·).
When a linear mapping L(x) is given in functional form, it is easy to determine
the transformation matrix A by transforming each of the vectors of the standard
basis by L(·), then inserting the result into the columns of a matrix. We recall that
the standard basis (also called natural basis) consists of the elements of the vector
space such that all coefficients but one are 0 and the non-zero one is 1. Denoting
the i-th vector of the natural basis by ei, we have that

A =
[
L(e1) L(e2) · · · L(en)

]
Henceforth, we denote by Fm,n both the set of matrices withm rows, n columns,

and entries in F, and the set of linear maps between two linear spaces Fn and Fm.

Diagonal and square matrices
Two important type of matrices are diagonal and square matrices.

The main diagonal of a generic matrix A=[aij ]∈Fm,n is the collection of entries
aij where i=j, that is a sequence (aii)min{m,n}

i=1 .
The diagonal matrix is a matrix in which the entries outside the main diagonal

are all zero. In more detail, a matrix A∈Fm,n, A=[aij ], is diagonal, if

∀i, j : i 6= j, aij = 0

The square matrix is a matrix with the same number of rows and columns.
Thus, we denote the set of all n×n (square) matrices as Fn,n.

To construct a (square) diagonal matrix in straightforward way, there is a func-
tion diag : Fn→ Fn,n, which puts the elements of the vector x ∈ Fn on the main
diagonal. More formally, ∀x∈Fn, A∈Fn,n, A=[aij ],

diag(x) = [aij ] :
{
∀j 6= i, aij = 0
∀xi∈x, aii = xi

The identity matrix of size n, denoted by In, is the n×n square diagonal matrix
with ones on the main diagonal. The identity matrix takes its name from the fact,
that it is the identity element of the matrix multiplication.

Matrix product
When two linear operators are represented by matrices, then the matrix product
(a.k.a. matrix multiplication) represents the composition of the two operators.

The matrix product is a binary operation that produces a matrix from two
matrices. Specifically, if A∈ Fm,n and B ∈ Fn,p, their matrix product AB ∈ Fm,p,
in which the n entries across a row of A are multiplied with the n entries down a
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columns of B and summed to produce an entry of AB. More formally, for A=[aij ],
B=[bij ], we have that AB=[(ab)ij ], with

(ab)ij =
∑n

k=1
aikbkj (B.22)

Clearly, the matrix product is not commutative, i.e., in general AB 6= BA.
Other algebraic operations (on matrices) which carry the term product in their

name are the outer product (of vectors in matrix form) and Kronecker product.
Before introducing them, we first need to recall some additional definitions.

Transpose and conjugate transpose

The operation of transposition is denoted by a superscript T . It produces a trans-
pose matrix, obtained from the original one by flipping a matrix over its main
diagonal, i.e., the transposition switches the row and column indices of the matrix.
Specifically, ∀A=[aij ]∈Fm,n, AT =[aji]∈Fn,m.

The operation of complex conjugation, defined also for (complex) matrices, is
performed entrywise, that is ∀A=[aij ]∈Cm,n, Ā=[āij ]∈Cm,n.

The conjugate transpose (a.k.a. Hermitian transpose) of a (complex) matrix is
obtained by taking the transpose of the original matrix and then taking the complex
conjugate of each entry. Formally, denoting the conjugate transpose by superscript
∗, we have that ∀A = [aij ] ∈ Cm,n, A∗ = [āji] ∈ Cn,m. Clearly, for a set of real
matrices, the transpose and conjugate transpose are the same.

The operation of taking the (conjugate) transpose is an involution (self-inverse),
i.e., (

AT
)T = A, (A∗)∗ = A (B.23)

Another important property of the (conjugate) transpose regards the matrix
product. For two matrices of the appropriate size, we have that

(AB)T = BTAT , (AB)∗ = B∗A∗

By induction, this result extends to the general case of multiple matrices: ∀k∈Z+,

(A1A2 · · ·Ak−1Ak)T = ATkA
T
k−1· · ·AT2AT1 (B.24a)

(A1A2 · · ·Ak−1Ak)∗ = A∗kA
∗
k−1 · · ·A∗2A∗1 (B.24b)

Compact notation for the matrix product of a sequence

The matrix product in the left-hand side (LHS) of the previous equations (B.24)
can be written in the compact form as

A1A2 · · ·Ak−1Ak =
∏k

i=1
Ai (B.25)
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The symbol
∏

indicates the product of a sequence of matrices of appropriate
size. Similarly to the summation notation, the subscript gives the symbol for a
dummy variable (i in this case), called the "index" of multiplication together with
its lower bound (here 1), whereas the superscript (in this instance k) gives its upper
bound. The lower and upper bound are expressions denoting integers. The factors
of the product are obtained by taking the expression following the product operator,
with successive integer values substituted for the index of multiplication, starting
from the lower bound and incremented by 1 up to and including the upper bound.

This notation supports two special cases, to multiply less than two factors. In
particular if the product has only one factor Ai, then the evaluated product is
Ai. If the product has no factors, then the evaluated result is identity matrix of
appropriate size.

Even though the matrix product is not commutative, for a sequence of matrices
of appropriate size we can write the matrix product in reverse order in compact
form, by combining the properties (B.23) and (B.24), i.e.,

AkAk−1 · · ·A2A1 =
(∏k

i=1
A∗i

)∗
(B.26)

These compact notations for the matrix product of sequences of matrices will
be widely used in the rest of this thesis.

Block diagonal matrices and direct sum
A block matrix is a matrix that is interpreted as having been broken into sections
called blocks (a.k.a. submatrices). Intuitively, a matrix interpreted as a block ma-
trix can be visualized as the original matrix with a collection of horizontal and
vertical lines, which break it up, or partition it, into a collection of smaller matri-
ces. Any matrix may be interpreted as a block matrix in one or more ways, with
each interpretation defined by how its rows and columns are partitioned. From here
on, we denote an interpretation of the partitioned matrix A by [Aij ].

Of particular interest for our thesis are block diagonal matrices, which are block
matrices that are square matrices, having square matrices on main diagonal blocks,
and such that the off-diagonal blocks are zero matrices.

Block diagonal matrices can be obtained from the application of the direct sum
operation, denoted by ⊕, to square matrices. For instance, ∀A = [aij ] ∈ Fn,n,
B=[bij ]∈Fm,m, (A⊕B)∈Fn+m,n+m is defined by

A⊕B =
[
A 0

0 B

]
=



a11 · · · a1n 0 · · · 0
...

. . .
...

...
. . .

...
an1 · · · ann 0 · · · 0

0 · · · 0 b11 · · · b1m
...

. . .
...

...
. . .

...
0 · · · 0 bm1 · · · bmm
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where, with a slight abuse of notation, we denote by 0 either a scalar number zero
in F, or a square matrix of all zeros of appropriate size.

The direct sum of a sequence of N ∈Z+ square (either real or complex) matrices
A = (Ai)Ni=1 produces a block diagonal matrix, having the elements of A on the
main diagonal blocks, i.e.,

N⊕
i=1

Ai = A1 ⊕A2 ⊕ · · · ⊕AN =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AN

 = diag(A) (B.27)

where 0 denotes square matrices of all zeros of appropriate size, and the function
diag(·) accepts sequence (or vector) of square matrices as input.

Kronecker product, vectorization and outer product

The Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary
size resulting in a block matrix. Specifically, for any A=[aij ]∈Fm,n, B=[bij ]∈Fr,p,
with m,n, p, r∈Z+, the Kronecker product is a function⊗ : Fm,n×Fr,p→Fm+r,n+p,
such that

A⊗B ,


a11B · · · a1nB

...
. . .

...
am1B · · · amnB

 (B.28)

The resulting Kronecker product matrix in more explicit form is

A⊗B =



a11b11 · · · a11b1p · · · · · · a1nb11 · · · a1nb1p
...

. . .
...

...
. . .

...
a11br1 · · · a11brp · · · · · · a1nbr1 · · · a1nbrp

...
...

. . .
...

...
...

...
. . .

...
...

am1b11 · · · am1b1p · · · · · · amnb11 · · · amnb1p
...

. . .
...

...
. . .

...
am1br1 · · · am1brp · · · · · · amnbr1 · · · amnbrp


The Kronecker product has a long list of properties presented and proved in

[119].
Some of these properties rely on the vectorization transformation defined by

Neudecker in [120], which converts the matrix into a column vector. Specifically,
any given matrix A ∈ Fm,n is interpreted as a block matrix of all n consecutive



B.4. LINEAR MAPS, MATRICES AND RELATED OPERATIONS 113

columns, i.e., A = [A•[1,n]]; the vectorization is a linear map vec : Fm,n → Fmn,
defined as

vec(A) ,


A•1
A•2
...

A•n

 (B.29)

The vectorization is frequently used together with the Kronecker product to
express matrix multiplication as a linear transformation on matrices.

In particular, for any A,B,C,D given either real or complex matrices of appro-
priate size, the following property is satisfied:

vec(ABC)=(CT⊗A)vec(B) (B.30)

Another property of the Kronecker product used in this thesis is (bi-)linearity:

(A+B)⊗(C+D)=A⊗C+B⊗C+A⊗D+B⊗D (B.31)

Further, the transposition and conjugate transposition are distributive over the
Kronecker product:

(A⊗B)T =AT⊗BT , (A⊗B)∗=A∗⊗B∗ (B.32)

We also recall that the outer product is a special case of the Kronecker product
of matrices. It is denoted by ⊗ and applied to (column-)vectors. Specifically, for
arbitrary x∈Fm,1, y, z∈Fn,1, we have that ⊗ : Fm×Fn→Fm,n is defined by

x ⊗ y , xy∗ =

x1ȳ1 · · · x1ȳn
...

. . .
...

xmȳ1 · · · xmȳn

 = [xiȳj ]

Moreover, in this context, the outer product is related to inner product through
matrix multiplication, i.e.,

(x ⊗ y)z = (xy∗)z = x(y∗z) = x〈z, y〉 = x
n∑
i=1

ziȳi

Clearly, the inner product of two vectors is defined only for the vectors of the
same linear space. Notoriously, it can be calculated from the outer product matrix
through the trace operator.

Trace, eigenvalues and determinant
The trace is defined (only for square matrices) by the sum of the elements on the
main diagonal. Formally, the trace is linear mapping tr : Fn,n→ F defined for all
square matrices A=[aij ]∈Fn,n by

tr(A) =
∑n

i=1
aii (B.33)
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The trace of product of matrices has a number of notable properties.
First of all, the trace of a matrix product can be rewritten as the sum of entry-

wise products of elements, i.e., ∀A,B,C∈Fn,n, A=[aij ], and B=[bij ]

tr(ATB) = tr(ABT ) = tr(BTA) = tr(BAT ) =
∑n

i=1

∑n

j=1
aijbij (B.34)

The trace is invariant under cyclic permutations of matrix product

tr(ABC) = tr(CAB) = tr(BCA) (B.35)

We note that arbitrary permutations are not allowed. In general,

tr(ABC) 6= tr(ACB)

The trace of the matrix product is not the product of traces:

tr(AB) 6= tr(A)tr(B)

It is the trace of the Kronecker product of two matrices that is the product of their
traces:

tr(A⊗B) = tr(A)tr(B)

The trace has an important relationship with eigenvalues.
The prefix eigen comes from the German adjective meaning "to own", and is

synonymous in English with the word characteristic. Each square matrix has its
own eigen- or characteristic equation, with corresponding eigen- or characteristic
values and vectors [115, p. 443].

We recall that an eigenvector of a linear map is a non-zero vector whose direction
does not change when that linear map is applied to it. Formally, for any scalar ν∈F,
and linear mapping L : Fn→Fn, represented by a transformation matrix A∈Fn,n,
the eigenvector is a non-zero (column-) vector x∈Fn, s.t.

L(x) = νx, Ax = νx (B.36)

The scalar ν is called eigenvalue.
Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points

in a direction that is stretched (or shrunk) by the mapping, and the eigenvalue is
the scale factor by which it is stretched. If the eigenvalue is negative, the direction
is reversed [115, p. 444].

Equation (B.36) can be stated equivalently as

(A− νIn) x = 0

which has a non-zero solution x iff the determinant of the matrix (A− νIn) is zero.
The determinant can be viewed as the scaling factor of the mapping described

by the transformation matrix. It is a function det : Fn,n→F defined as follows.
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• If A=[a]∈F, i.e., a 1×1 matrix, then det(A)=a.

• If A ∈ Fn,n, n ∈ Z+, n > 1, then the minor Mij is the determinant of the
(n−1)×(n−1) submatrix of A, obtained by deleting the i-th row and j-th
column of the matrix A.

• The cofactor associated with Mij is defined as (−1)i+j Mij .

• The determinant of A= [aij ] ∈ Fn,n, n ∈ Z+, n> 1 is given ∀i= (j)nj=1, and
∀j=(i)ni=1 by

det(A) =
∑n

j=1
(−1)i+j Mij =

∑n

i=1
(−1)i+j Mij (B.37)

The eigenvalues of A=[aij ]∈Fn,n are values of the scalar variable ν that satisfy
the equation

det (A− νIn) = 0 (B.38)

From (B.37), the LHS of (B.38) is a polynomial function of the variable ν,
and the degree of this polynomial is n, the order of the matrix A. Its coefficients
depend on the entries of A, except that its term of degree n is always (−1)n νn.
This polynomial is called the characteristic polynomial of A.

The fundamental theorem of algebra implies that the characteristic polynomial
of A∈Fn,n, being a polynomial of degree n, can be factored into the product of n
linear terms, i.e.,

det (A− νIn) =
∏n

i=1
(νi − ν)

where the scalar numbers νi∈C (with i∈Z+, i≤n), which may not all have distinct
values, are roots of the polynomial and are the eigenvalues of A.

det (A) =
∏n

i=1
νi

It is a well known fact that the eigenvalues of the matrix A∈Fn,n are related
also to its trace [114, p. 288] as

tr (A) =
∑n

i=1
νi (B.39)

Lastly, the set of eigenvalues of a square matrix A is known as its spectrum. We
denote it by SA

Spectral radius and matrix norms
The spectral radius of a square matrix (or of a bounded linear operator) is the supre-
mum among the absolute values of the elements in its spectrum. More formally,
the spectral radius is a function ρ : Fn,n→R0 defined ∀A∈Fn,n as

ρ(A) = max
νi∈SA

|νi| (B.40)
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The spectral radius is closely related to the rate of the convergence of the power
sequence of a matrix [114, p. 525], i.e., ∀A∈Fn,n,

lim
k→∞

Ak = 0 iff ρ(A) < 1 (B.41)

The spectral radius is linked to matrix norms, notably through Gelfand’s theo-
rem [121, p. 195], which proves that ∀A∈Fn,n

ρ(A) = lim
k→∞

∥∥Ak∥∥ 1
k (B.42)

for any matrix norm ‖ · ‖.
A matrix norm is a natural extension of the notion of a vector norm to matrices.
Amatrix norm is a norm on the vector space Fm,n, i.e., a function ‖·‖ : Fm,n→R0

satisfying the following properties (see e.g. [115, p. 438], [116, p. 280]) ∀c∈R and
∀A∈Fm,n:

• positive-valued:
‖A‖ ≥ 0 (B.43a)

• definite:
‖A‖ = 0 iff A = 0 (B.43b)

• absolutely homogeneous:
‖cA‖ = |c| ‖A‖ (B.43c)

• sub-additive, i.e., satisfying the triangle inequality (∀A,B∈Fm,n):

‖A+B‖ ≤ ‖A‖+ ‖B‖ (B.43d)

• sub-multiplicative, i.e., (∀A∈Fm,p, B∈Fp,n):

‖AB‖ ≤ ‖A‖ ‖B‖ (B.43e)

Some matrix norms are induced by vector norms [115, p. 438]. When a vector
norm defined on a linear space Fn is given, any matrix A∈ Fm,n is regarded as a
linear operator from Fn to Fm, and the corresponding matrix norm ‖·‖ : Fm,n→R0
induced by the vector norm ‖ · ‖ : Fn→R0 is defined as an operator norm (B.17):

‖A‖ = sup {‖Ax‖ : x∈Fn, ‖x‖=1} = sup
{
‖Ax‖
‖x‖ : x∈Fn, x 6=0

}
(B.44)
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In particular, if the p-norm for vectors (p≥1) is used for both linear spaces Fm
and Fn, then the corresponding induced operator norm is:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

In the special cases of p=1, 2,∞, ∀A=[aij ]∈Fm,n, the induced matrix norms can
be computed explicitly (see e.g. [116, p. 281, p. 283]) as

‖A‖1 = max
1≤j≤n

∑m

i=1
|aij | (B.45)

which is the maximum absolute column sum of the matrix;

‖A‖∞ = max
1≤i≤m

∑n

j=1
|aij | (B.46)

which is the maximum absolute row sum of the matrix;

‖A‖2 = σmax(A) = √ max
νi∈S(A∗A)

νi (B.47)

which is the largest singular value of A, i.e., the square root of the largest eigenvalue
of the matrix A∗A.

The measure given to a matrix under a induced norm describes how the matrix
stretches (or shrinks) unit vectors relative to that norm. The maximum stretch is
the norm of the matrix [115, p. 439].

Another useful matrix norm is the Frobenius norm, also known as Schur norm,
Hilbert-Schmidt norm, or `2-norm [96, p. 341] which is a special case of entry-wise
matrix norms, i.e., matrix norms that treat an m×n matrix as a vector of size mn,
and use one of the familiar vector norms (the Euclidean vector norm in this case).

Specifically, the Frobenius norm ‖·‖F : Fm,n→R0 is defined ∀A=[aij ]∈Fm,n as

‖A‖F , ‖vec(A)‖2 =
√∑m

i=1

∑n

j=1
|aij |2 =

√
tr(A∗A) (B.48)

Last but not least important is entry-wise norm `1-norm [96, p. 341], defined
as ‖·‖1 : Fm,n→R0, such that, ∀A=[aij ]∈Fm,n

‖A‖1 , ‖vec(A)‖1 =
∑m

i=1

∑n

j=1
|aij | (B.49)

For any A∈Fm,n, all the aforementioned matrix norms induce the same topology
on the linear space Fm,n, and are thus equivalent, that is they satisfy (B.9). This
statement is true because the vector space Fm,n has the finite dimension m×n, and
for finite-dimensional linear spaces all norms are equivalent [118, Theorem 4.27].

It is useful to recall that for any A∈Fn,n, the `1-norm and the Frobenius norm
satisfy the following inequality [96, p. 365]:

‖A‖1 ≤ n ‖A‖F (B.50)
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We observe that ∀A ∈ Fm,n the matrix A∗A ∈ Fn,n is a special square matrix
called positive semi-definite. In what follows next, we present this and other special
types of square matrices.

Special types of square matrices
In the previous subsections B.4, B.4, B.4 and B.4 we have seen that square matrices
play very important role in linear algebra. The notions of identity matrix, trace,
determinant, eigenvalues and derived concepts of spectrum, spectral radius and
singular values are all peculiar to square matrices. In this subsection we keep on
the topic by presenting some relevant types of square matrices.

We already seen that identity matrix is the identity element of the matrix mul-
tiplication, i.e., ∀A∈Fm,n

ImA = AIn = A

The identity matrix is used in the definition of the inverse element of matrix
multiplication. A square matrix A ∈ Fn,n is called invertible (also nonsingular or
nondegenerate) if ∃B∈Fn,n, s.t.

AB = BA = In

If this is the case, then the matrix B is uniquely determined by A and is called the
inverse of A, denoted by A−1. A square matrix A is invertible iff det(A) 6=0.

The following properties hold for all invertible matrices A,B∈Fn,n:(
A−1)−1 = A (B.51a)

(cA)−1 = c−1A−1, ∀c∈F, c 6=0 (B.51b)(
AT
)−1 =

(
A−1)T (B.51c)

(AB)−1 = B−1A−1 (B.51d)

det
(
A−1) = (det(A))−1 (B.51e)

A square matrix that is equal to its transpose is said to be symmetric matrix.
Formally, A=[aij ]∈Fn,n is symmetric if A=AT , or equivalently, if aij =aji, ∀i, j.
We indicate the set of all symmetric matrices of order n by Fn,nT , i.e.,

Fn,nT ,
{
A∈Fn,n : A=AT

}
A skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix

A = [aij ] ∈ Fn,n whose transpose is its negation, that is it satisfies the condition
−A=AT , or equivalently the condition aij=−aji, ∀i, j.

Remarkably, any complex numbera+ıb can be identified with a skew-symmetric
2×2 matrix [122, p. 24] with equal diagonal entries[

a b
−b a

]
(B.52)
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In other words, complex numbers C are two-dimensional vector spaces over the real
numbers, so each complex number can be identified with points in the Euclidean
plane R2. This facts justify the following remark.
Remark B.1. One can consider complex operators acting on Cm,n as real (block)
matrices acting on R2m,2n [88].

A Hermitian (or self-adjoint) matrix is a complex square matrix A=[aij ]∈Cn,n
that is equal to its own conjugate transpose, i.e., A=A∗, or, equivalently aij= āji,
∀i, j. We denote the set of all Hermitian matrices of order n by Cn,n∗ . Explicitly,

Cn,n∗ , {A∈Cn,n : A=A∗}

Hermitian matrices are named after Charles Hermite, who demonstrated in 1855
that matrices of this form share a property with real symmetric matrices of always
having only real eigenvalues.

Since for a set of real matrices, the transpose and conjugate transpose are the
same, we indicate the set of either real symmetric or (complex) Hermitian matrices
of order n by

Fn,n∗ , {A∈Fn,n : A=A∗}

A square matrix with complex entries is said to be skew-Hermitian (a.k.a. an-
tihermitian) if its conjugate transpose is equal to its negative. Formally, a matrix
A=[aij ]∈Cn,n is skew-Hermitian if A=−A∗, i.e., aij=−āji, ∀i, j.

A symmetric real matrix A∈Rn,nT is called positive definite if the scalar xTAx is
positive for every non-zero column vector x∈Rn.

A concept of positive definiteness is generalized to complex matrices as follows.
A Hermitian matrix A∈Cn,n∗ is said to be positive definite if the scalar x∗Ax is real
and positive for all non-zero column vectors x∈Cn.

We denote the set of all (either real or complex) positive definite matrices of
order n by Fn,n+ . Formally,

Fn,n+ ,
{
A∈Fn,n∗ : ∀x∈Fn,1, x 6=0, x∗Ax∈R+

}
All the matrices within this set have only real positive eigenvalues. Thus, every
matrix A∈Fn,n+ is invertible.

Similarly, either real symmetric or complex Hermitian matrix A∈Fn,n∗ is called
positive semi-definite if the scalar x∗Ax is real and non-negative for all non-zero
(either real or complex) column vectors x∈Fn.

We denote the set of all positive semi-definite matrices as Fn,n0 . Explicitly,

Fn,n0 ,
{
A∈Fn,n∗ : ∀x∈Fn,1, x 6=0, x∗Ax∈R0

}
A real symmetric or complex Hermitian matrix is positive semi-definite if and only
if all of its eigenvalues are non-negative.

Noticeably, for any matrix A, the matrix A∗A is positive semi-definite.
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As alternative notation to A ∈ Fn,n0 (respectively to A ∈ Fn,n+ ) we write A� 0
(respectively A�0).

In conclusion of this subsection we recall that for positive semi-definite matrices,
the trace dominates the Frobenius norm [123, p. 233], i.e., ∀A∈Fn,n0

tr(A) ≥ ‖A‖F (B.53)

Sequences of matrices and their norms
As it can be seen through all the thesis, in order to analyze Markov jump (possibly
switched) linear systems, we widely use the indicator function on the jump param-
eter to "Markovianize" the state. This, in turn, decomposes the matrices associated
to the second moment and control problems into N matrices, with N being the
number of the operational modes of the system. Therefore it comes up naturally
that a convenient space to be used is the one we define as NFm,n which is the linear
space made up of all N -sequences of either real or complexm×n matrices. Formally,

NFm,n ,
{
A,(Ai)Ni=1 : Ai∈Fm,n

}
Henceforth, we indicate byN ∈Z+ the number of operational modes (also known

as discrete states) of the system, and by M the set of operational modes, i.e.,

M,{i∈Z+ : i≤N}

For every sequence A=(Ai)Ni=1∈NFm,n and any matrix norm ‖·‖, we define the
following equivalent norms in the finite dimensional linear space NFm,n:

‖A‖1,
∑N

i=1
‖Ai‖ (B.54a)

‖A‖2,
√∑N

i=1
tr(A∗iAi) (B.54b)

‖A‖max,max
i∈M
{‖Ai‖} (B.54c)

We shall omit the subscripts 1, 2, max whenever the definition of a specific norm
does not affect the result being considered.

It is easy to verify that NFm,n equipped with any of the above norms is a Banach
space. To show this fact explicitly, we need to recall some additional notions related
to normed linear spaces.

Let us denote by (X, dX) and (Y, dY) two normed linear spaces, where dX and
dY indicate the distances induced by the respective norms.

A mapping f : (X, dX)→ (Y, dY) is said to be homeomorphism if f is invertible
and both f and f−1 are continuous [124, p. 93]. We stress that f is homeomor-
phism if and only if f−1 is a homeomorphism. A homeomorphism f is uniform
homeomorphism if f and f−1 are uniformly continuous.
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Two normed linear spaces (X, dX) and (Y, dY) are uniformly homeomorphic (to
one another) if there exists a uniform homeomorphism mapping one of them onto
the other [124, p. 117].

Uniform homeomorphisms are very important in the theory of Banach spaces,
since this family of mappings preserve completeness. In particular, let the normed
linear spaces (X, dX), (Y, dY) be uniformly homeomorphic. Then (X, dX) is complete
if and only if (Y, dY) is complete [124, Theorem 3.13.9].

The finite-dimensional linear spaces Fm,n and Fmn (equipped respectively with
any of aforementioned equivalent matrix and vector norms) are uniformly homeo-
morphic through the vectorization (B.29).

Since every finite-dimensional normed space over Fn is a Banach space [117,
Corollary 1.4.19], then also any finite-dimensional linear space Fm,n is a Banach
space. As alternative argument we can use the fact mentioned in section B.4, stating
that if Y is a Banach space, then so is B(X,Y) [117, Theorem 1.4.8].

We can show that NFm,n equipped with any of the norms (B.54) is a Banach
space as follows. We denote by vec2 : NFm,n→ FNmn, a linear operator defined
∀A=(Ai)Ni=1∈NFm,n as

vec2(A) ,


vec(A1)
vec(A2)

...
vec(AN )

 (B.55)

The linear spaces NFm,n equipped with any of the norms (B.54) are uniformly
homeomorphic to a finite-dimensional Banach space FNmn through the mapping
vec2(·) [12, p. 17]. Thus, all these normed linear spaces are complete, that is they
are Banach spaces.

Furthermore, (NFm,n, ‖·‖2) is a Hilbert space [12, p. 16], with the inner product
given, for A=(Ai)Ni=1 ,B=(Bi)Ni=1∈NFm,n by

〈A , B 〉 ,
∑N

i=1
tr(A∗iBi) (B.56)

We extend the notion of being symmetric, Hermitian and positive (semi-)definite
for the sequences of square matrices as follows.

For A = (Ai)Ni=1 ∈ NFm,n we write A∗ = (A∗i )
N
i=1 ∈ NFn,m, and say that the

sequence A= (Ai)Ni=1 ∈ NFn,n is either real symmetric or (complex) Hermitian if
A=A∗. The related set is defined as

NFn,n∗ ,
{
A=(Ai)Ni=1∈NFn,n : Ai∈Fn,n∗

}
(B.57)

The sets of all N -sequences of positive (semi-)definite matrices in Fn,n are de-
fined in similar fashion, i.e.,

NFn,n+ ,
{
A=(Ai)Ni=1∈NFn,n : Ai∈Fn,n+

}
(B.58)
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NFn,n0 ,
{
A=(Ai)Ni=1∈NFn,n : Ai∈Fn,n0

}
(B.59)

For A = (Ai)Ni=1 ∈ NFn,n and B = (Bi)Ni=1 ∈ NFn,n we write that A � B if
A−B=(Ai−Bi)Ni=1∈NFn,n+ , and that A�B if A−B=(Ai−Bi)Ni=1∈NFn,n0 .

Sets of matrices and convex polytopes
The last two subsections focused on the topics of linear algebra are dealing with
convex sets of matrices in FN,N . We will see in the next chapter that these sets of
matrices play an important role in the treatment of (time-varying) uncertainties on
the system parameters.

Let us denote by P any finite set (of cardinality V ) of square matrices acting
on the Banach space FN,N . We indicate by V the correspondent index set, that is
a set whose members label (or index) elements of another set, in this instance P:

V , {l∈Z+ : l≤V } (B.60)

We define a set of all either real or complex square N×N matrices of cardinality
V as follows:

VFN,N ,
{
Pl∈FN,N : l∈V

}
(B.61)

Any set of V ∈Z+ either real or complex square N×N matrices is then repre-
sented as P ⊆ VFN,N .

We remind that any complex matrix acting on Cm,n can be seen as a real
matrix acting on R2m,2n (See Remark B.1), which in turn can be transformed in
a vector acting on R4mn through uniform homeomorphism vec(·). Thus, without
loss of generality, we recall the notions of convexity for finite linear spaces over
the real numbers. Clearly, all the definitions and properties will still apply to the
corresponding sets of either real or complex matrices.

A set S⊂Rn is convex if (and only if) for each pair of distinct points x, y∈S the
closed segment with endpoints x and y is contained in S [125, p. 8]. In other words,
a set S⊂Rn is said to be convex if (and only if) ∀x, y∈S and all {λ∈R0 : λ≤1},
the element (1−λ) x+λy ∈ S.

Let S ⊂ Rn be a convex set. An element (also known as a point) x ∈ S is an
extreme point of S provided y, z ∈ S, λ ∈ R+, λ < 1, and x = λy+(1−λ) z imply
x = y = z. In other words, x is an extreme point of S if it does not belong to the
relative interior of any segment contained in S [125, p. 17].

The convex hull of a set S⊂Rn is the intersection of all the convex sets in Rn
which contain S [125, p. 14]. It is denoted by conv S.

The convex hull of a nonempty set S⊂Rn is the set of all points which may be
represented as convex combinations of points of S [125, p. 14]; that is, it is a set of
all points which can be written as

conv S =
{∑V

l=1
λlxl ∈ S : xl∈S, λl∈R0,

∑V

l=1
λl=1, V ∈Z+

}
(B.62)
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A convex hull of a finite set of points defines a convex polytope (in its V-
description), i.e., a compact convex set S⊂Rn that has a finite number of extreme
points [125, p. 31, p.52a]. In this context, compactness is a property of a set being
closed (i.e., containing all its limit points) and bounded (that is, having all its points
lie within some fixed distance of each other).

Formally, a set S ⊂ Rn is open if every x ∈ S is the center of some open ball
which is contained in S. We remind that ∀x∈S, δ∈R+, an open ball with center x
and radius δ is a set {y∈S : dS(y, x)<δ}, where dS(y, x) is a distance between two
vectors x and y in S.

A set S⊂Rn is closed if its complement {x∈Rn : x 6∈S} is open. For instance,
all finite sets of points, {} and Rn are closed. Clearly, for any x∈S⊂Rn and δ∈R+,
a set {y∈S : dS(y, x)≤δ} is closed. In fact, such a set is called a closed ball (with
center x and radius δ) [125, p. 5].

Finally, a set S ⊂ Rn is bounded if there exists δ ∈ R+ and x ∈ S such that
dS(y, x)<δ for all y∈S.

For the sake of clarity, we provide alternative definitions of closed and compact
sets as follows. A set S⊂Rn is closed if the limit of every convergent sequence of
points of S belongs to S. From this point of view, a set S⊂Rn is compact if every
infinite sequence of points of S contains a subsequence which has a point of S as
limit [125, p. 6].

We recall that for a polytope, it is customary to call its extreme points vertices
[125, p. 31]. A polytope is called full-dimensional if it is an n-dimensional object
in Rn. This is a type of polytopes we are dealing with in this thesis. In the case of
a full-dimensional polytope, the minimal V-description is unique; it is given by the
convex hull of all the vertices.

On a side note, we remind that any polytope can be equivalently represented by a
bounded intersection of finitely many closed half-spaces (i.e., by an H-description),
which is also unique for full-dimensional polytopes. In fact, there are several al-
gorithms for the conversion between the two representations of (full-dimensional)
polytopes [125, p. 52a].

Joint spectral radius

The joint spectral radius (from now on, JSR, [126]) is a generalization of the classical
notion of spectral radius of a matrix, to sets of matrices. In the last decades JSR has
been subject of intense research due to its role in the study of wavelets, switching
systems, approximation algorithms, and many other topics [88].

In order to define JSR formally, for each k∈Z+, P ⊆ VFN,N let us consider the
set Pk(P) of all possible products of length k whose factors are elements of P, i.e.,

Pk(P) ,
{(∏k

i=1
P ∗li

)∗
∈FN,N : Pli ∈P⊆VFN,N

}
(B.63)
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For any matrix norm ‖·‖ on FN,N , consider the supremum among the normalized
norms of all products in Pk(P), k∈Z+ i.e.,

ρ̂k(P) , sup
P∈Pk(P)

‖P‖
1
k (B.64)

The joint spectral radius of P ⊆ VFN,N is defined as

ρ̂(P) = lim
k→∞

ρ̂k(P) (B.65)

The joint spectral radius of a bounded set of matrices has some interesting
properties.

Proposition B.1 (Convex hull). The convex hull of a set has the same joint
spectral radius as the original set, i.e.,

ρ̂(convP) = ρ̂(P) (B.66)

Proof. This result was first obtained by Barabanov [127]. See [128], [129] for further
details.

Proposition B.2 (Convergence of matrix products). For any bounded set of ma-
trices P⊆ VFN,N and for any k ∈ Z+, all matrix products P ∈ Pk (P) converge to
zero matrix as k→∞, if and only if ρ̂(P)<1.

Proof. See the seminal work of Berger and Whang [130, Theorem I (b)].

These concepts are at the basis of our main result on (robust) stability of poly-
topic time-inhomogeneous MJLSs, presented in Chapter 3.

B.5 Fields of sets

In order to define the concept of algebra over a set, which is necessary for a definition
of a probability space (it will be presented in the next section), we need to introduce
first the notions of sequences of sets, their limits, and collections of sets, together
with the related set relations. The material presented here comes mainly from Allan
Gut’s book on probability [113, pp. 4–6].

Sequences of sets and their limits
As any sequence presented in Subsection B.3, a sequence of sets can be denoted by
the indexed element of the sequence in round brackets, e.g., (Sk), with k∈T.

A sequence of sets (Sk) is said to be monotone non-decreasing, and denoted by
(Sk)↗, if S0⊆S1⊆S2⊆· · · .

Similarly, a sequence of sets (Sk) is said to be monotone non-increasing, and
denoted by (Sk)↘, if S0⊇S1⊇S2⊇· · · .
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While working on sequences of sets, the following (de Morgan’s) formulas can
be useful (⋃t

k=0
Sk
)C

=
⋂t

k=0
SC
k and

(⋂t

k=0
Sk
)C

=
⋃t

k=0
SC
k (B.67)

It is also possible to define limits of sets. However, not every sequence of sets
has a limit. We define a limit of a sequence (Sk) of subsets of a set Ω in the following
manner.

lim inf
k→∞

(Sk) ,
⋃∞

k=0

⋂∞
t=k

St and lim sup
k→∞

(Sk) ,
⋂∞

k=0

⋃∞
t=k

St

If these sets agree, then

S = lim inf
k→∞

(Sk) = lim sup
k→∞

(Sk) = lim
k→∞

(Sk)

One instance when a limit exists is when the sequence of sets is monotone.
Specifically, let (Sk) be a sequence of subsets of a set Ω. We have that

(Sk)↗ ⇒ lim
k→∞

(Sk) =
⋃∞

k=0
Sk (B.68)

Similarly,
(Sk)↘ ⇒ lim

k→∞
(Sk) =

⋂∞
k=0

Sk (B.69)

Collections of sets
Collections of sets are defined according to a setup of rules. Different rules yield
different collections. In what follows we provide definitions of some important
collections of sets, together with the connections between them.

Let F be a non-empty collection of subsets of Ω, and consider the following set
relations:

S ∈ F ⇒ SC∈ F (B.70a)

S1,S2 ∈ F ⇒ S1 ∪ S2 ∈ F (B.70b)

S1,S2 ∈ F ⇒ S1 ∩ S2 ∈ F (B.70c)

S1,S2 ∈ F , S2 ⊆ S1 ⇒ S1\ S2 ∈ F (B.70d)

Sk ∈ F ∀k ∈ T ⇒
⋃∞

k=0
Sk ∈ F (B.70e)

Sk ∈ F ∀k ∈ T ∧ Si ∩ Sj = {} ∀i, j ∈ T : i 6= j ⇒
⋃∞

k=0
Sk ∈ F (B.70f)

Sk ∈ F ∀k ∈ T ⇒
⋂∞

k=0
Sk ∈ F (B.70g)

Sk ∈ F ∀k ∈ T ∧ (Sk)↗ ⇒
⋃∞

k=0
Sk ∈ F (B.70h)
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Sk ∈ F ∀k ∈ T ∧ (Sk)↘ ⇒
⋂∞

k=0
Sk ∈ F (B.70i)

Clearly, a number of relations among these rules and extensions of them can be
established. For instance (B.70a) and one of (B.70b) and (B.70c), together with
the de Morgan formulas (B.67), yield the other; (B.70a) and one of (B.70e) and
(B.70g), together with the de Morgan formulas (B.67), yield the other; (B.70b) and
induction shows that (B.70b) can be extended to any finite union of sets; (B.70c)
and induction shows that (B.70c) can be extended to any finite intersection of sets,
and so on.

We recall definitions of some notorious collections of sets in what follows.
Let F be a collection of subsets of a set Ω. Then,

• F is a field or an algebra if Ω ∈ F and properties (B.70a) and (B.70b) hold;

• F is a σ-field or a σ-algebra if Ω∈F and properties (B.70a) and (B.70e) hold;

• F is a monotone class if properties (B.70h) and (B.70i) hold;

• F is a π-system if property (B.70c) holds;

• F is a Dynkin system if Ω ∈ F and properties (B.70d) and (B.70h) hold.

The definition of a Dynkin system (also known as λ-system) varies. One alternative,
in addition to the assumption that Ω ∈ F , is that (B.70a) and (B.70f) hold.

The definitions of the different collections of sets are obviously based on minimal
requirements. By manipulating the different properties (B.70), for example together
with the de Morgan formulas (B.67), other properties can be derived. The following
relations between different collections of sets are obtained by such manipulations.

The following connections hold:

1. Every algebra is a π-system.

2. Every σ-algebra is an algebra.

3. An algebra is a σ-algebra if and only if it is a monotone class.

4. Every σ-algebra is a Dynkin system.

5. A Dynkin system is a σ-algebra if and only if it is π-system.

6. Every Dynkin system is a monotone class.

7. Every σ-algebra is a monotone class.

8. The power set of any subset of Ω is a σ-algebra on that subset.

9. The intersection of any number of σ-algebras, countable or uncountable, is,
again, a σ-algebra.
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10. The countable union of a non-decreasing sequence of σ-algebras is an algebra,
but not necessarily a σ-algebra.

11. If F is a σ-algebra, and S1 ⊆ Ω, then S1 ∩ F = {S1 ∩ S2 : S2 ∈ F} is a
σ-algebra on S1.

12. If Ω and Ω′ are sets, F ′ a σ-algebra on Ω′ and L : Ω → Ω′ a mapping, then
the inverse L−1 (F ′) =

{
L−1 (S′) : S′ ∈ F ′

}
is a σ-algebra on Ω.

Measurable spaces, filtration and Borel sets
A set Ω together with an associated σ-algebra, F , i.e., the pair (Ω,F), is called a
measurable space; and the members of F are called measurable sets.

For two given measurable spaces (Ω,F) and (Ω′,F ′), a function f : Ω→ Ω′
is said to be (F ,F ′)-measurable if for every Ω′-measurable set S∈F ′, the inverse
image is Ω-measurable, i.e., f−1(S) = {ω∈Ω : f(ω)∈S} ∈ F .

A non-decreasing sequence of σ-algebras on a measurable space is called fil-
tration. Formally, given a measurable space (Ω,F), a filtration is a sequence of σ-
algebras (Ft), where t∈Tk and F0⊆F1⊆F2⊆ . . .⊆Fk⊆F , i.e., t1≤ t2 ⇒ Ft1⊆Ft2 .

In the rest of this subsection we characterize Rn, the σ-algebra of Borel sets,
which are subsets of the set Ω=Rn. This topic is closely related to Subsection B.4,
where we provided definitions of open sets on Rn.

We remind from Subsection B.3 that a linear space Rn is a product space of
all ordered n-tuples, which are finite ordered lists of n elements, each of which is
defined on R. The Euclidean space Rn is obtained via Cartesian product of n real
lines. We recall that the real line is another name for the set R of all real numbers.
We present first the σ-algebra of Borel sets on R, i.e., a special case of Rn with
n=1, and then extend the results to an arbitrary n∈Z+.

So, the sets in R are called Borel sets, and the measurable space (R,R) is called
the Borel space. The σ-algebra of Borel sets, or the Borel-σ-algebra, is defined as
the σ-algebra generated by the open subsets of R, i.e.,

R , σ {S⊂R : S is open}

See Subsections B.4 and B.2, B.3, B.3, for additional details on open sets, open
balls, and distances for real numbers, normed linear spaces, and specific equivalent
vector norms.

An important fact is that the Borel sets can, equivalently, be generated by
intervals. We remind that (real) intervals are subsets of real line with the property
that any real number that lies between two real numbers in an interval is also
included in that interval. The interval of real numbers between a and b, including
a and b, is denoted [a, b], and called closed interval. Formally, ∀a, b∈R, a≤b,

[a, b] , {c∈R : a≤c, c≤b}

These two numbers a and b are called the endpoints of the interval.
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An open interval does not include its endpoints, and is indicated with paren-
theses. In symbols, ∀a, b∈R, a<b,

(a, b) , {c∈R : a<c, c<b}

A half-open interval includes only one of its endpoints, and is denoted by mixing
the notations for open and closed intervals. Specifically, ∀a, b∈R, a<b,

(a, b] , {c∈R : a<c, c≤b} , and [a, b) , {c∈R : a≤c, c<b}

Obviously, the usage of parentheses and square brackets in the presented concise
notation for intervals causes the slight abuse of notation. However, the domain of
mathematical objects contained in parentheses and square brackets makes clear
which objects are represented in the specific context.

We have that Borel-σ-algebras on R can be equivalently defined [113, p. 15] by

R = σ {(a, b] , −∞≤a<b<∞} (B.71a)
= σ {[a, b) , −∞<a<b≤∞} (B.71b)
= σ {(a, b) , −∞≤a<b≤∞} (B.71c)
= σ {[a, b] , −∞<a≤b<∞} (B.71d)
= σ {(−∞, b] , −∞<b<∞} (B.71e)

We can interpret intervals as one-dimensional rectangles and extend (B.71) for
Borel-σ-algebras on Rn by considering higher-dimensional rectangles.

In particular, let (Ω1,F1) and (Ω2,F2) be two measurable spaces. The σ-algebra
for the corresponding product space Ω1×Ω2 is called the product σ-algebra and is
defined by

F1×F2 , σ {S1×S2 : S1∈F1, S2∈F2} (B.72)

Clearly,
Rn = R×R×· · ·×R︸ ︷︷ ︸

n times

=
∏∏∏n

i=1
R (B.73)

where
∏∏∏

denotes a Cartesian product of a sequence, R is defined as in (B.71), e.g.,

Rn = σ {(−∞, b1]×(−∞, b2]×· · ·×(−∞, bn] : bi∈R ∀i∈Z+, i≤n} (B.74)

B.6 Probability space and Markov processes

Probability is the extent to which an event is likely to occur, measured by the ratio
of the favorable cases to the whole number of cases possible [131, p. 1414]. In
probability theory, an experiment (or trial) is any procedure that can be infinitely
repeated and has a well-defined set of possible outcomes, known as the sample
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space. Probability models aim at describing random experiments, that is, experi-
ments that can be repeated (indefinitely) and where future outcomes (i.e., results
of an experiment) cannot be exactly predicted - due to randomness - even if the
experimental situation can be fully controlled [113, p. 1].

Probability space

The basis of the probability theory is the probability space, i.e., a triple (Ω,F ,Pr),
where

• Ω is the sample space, i.e., some (possibly abstract) set; its elements ω ∈Ω
are all the possible outcomes of an experiment;

• F ⊆ 2Ω is the σ-algebra of sets (called events), which are the measurable
subsets of Ω; their atoms ω∈Ω are named elementary events;

• Pr : F → [0, 1] is the probability measure, which is a function satisfying the
following

Kolmogorov’s axioms:

1. For any S∈F , ∃ a real number Pr (S)≥0; it is called the probability of S.

2. Pr (Ω)=1.

3. Let {Sn ⊆ Ω : n∈Z+}, be a collection of disjoint subsets of Ω. Then we have
a countable additivity, i.e.,

Pr
(⋃∞

n=1
Sn
)

=
∑∞

n=1
Pr (Sn)

From the Kolmogorov’s axioms only, we can derive various relations between
probabilities of unions, subsets, complements and so on [113, p. 11].

Let S, Si, with i, n∈Z+, be measurable sets. Then,

Pr
(
SC) = 1− Pr (S) (B.75a)

Pr ({}) = 0 (B.75b)

Pr (S1 ∪ S2) ≤ Pr (S1) + Pr (S2) (B.75c)

S1 ⊆ S2 ⇒ Pr (S1) ≤ Pr (S2) (B.75d)

Pr
(⋃n

i=1
Si
)

+ Pr
(⋂n

i=1
SC
i

)
= 1 (B.75e)



130 APPENDIX B. MATHEMATICAL BACKGROUND

Events’ independence and conditional probabilities
One of the most central concepts of probability theory is independence, which means
that successive experiments do not influence each other, that the future does not
depend on the past, that knowledge of the outcomes so far does not provide any
information about future experiments [113, p. 17].

We say that the events S1,S2∈F are independent if and only if

Pr(S1 ∩ S2) = Pr(S1) Pr(S2)

Clearly, the product between two probability measures is indicated by juxtaposition.
A suggestive way to illustrate independence is to introduce the concept of condi-

tional probability, i.e., a measure of the probability of an event given (by assumption
or evidence) that another event has occurred. Formally, let S1,S2∈F be two events,
and suppose that Pr(S1)> 0. The conditional probability of S2 given S1 is defined
as

Pr(S2 | S1) = Pr(S1 ∩ S2)
Pr(S1) (B.76)

Obviously, if events S1,S2∈F are independent,

Pr(S2 | S1) = Pr(S1) Pr(S2)
Pr(S1) = Pr(S2)

Lastly, the famous Bayes’ rule (also known as Bayes-Price rule, or Bayes’ theorem,
Bayes’ law) shows the relationship between Pr(S2 | S1) and Pr(S1 | S2). It states
that

Pr(S2 | S1) = Pr(S1 | S2) Pr(S2)
Pr(S1) (B.77)

Stochastic processes
To define a concept of the random variable, essential in the presentation of stochas-
tic processes in general, and Markov chains in particular, let us consider a proba-
bility space (Ω,F ,Pr) and a measurable space (M,M).

Here, M indicates any set, andM⊆ 2M the associated σ-algebra.
A random variable (also known as a random quantity, aleatory variable, or

stochastic variable) is a function f : Ω→M which is (F ,M)-measurable. It maps
outcomes ω∈Ω of an experiment to numerical quantities (labels) fi ∈M. The set
M is called the state space of the random variable. For any S ⊆ M, the associated
probability measure Pr({ω∈Ω : f(ω)∈S}) is usually shortened to Pr(f ∈S) and is
called probability distribution.

A random variable is said to be discrete, if its state space M is discrete. One
typical example of discrete state space is given by values associated to outcomes of
the roll of a dice.

A discrete random variable has a discrete probability distribution, which can
be encoded by a discrete list of the probabilities of the outcomes, known as a
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probability mass function, i.e., a function that gives the probability that a discrete
random variable is exactly equal to some value. We write probability mass function
as Pr({ω∈Ω : f(ω) = fi∈M}), or simply Pr(f = fi).

An important parameter of a (discrete) random variable is its expected value
(also known as (mathematical) expectation, mean value, or first moment), that is,
probability-weighted average of all possible values of random variable. In other
words, each possible value the random variable can assume is multiplied by its
probability of occurring, and the resulting products are summed to produce the
expected value. We denote the expected value by E(·). For M⊆Z+, we have that

E(f) ,
∑|M|

i=1
fi Pr(f=fi) (B.78)

A stochastic process is a collection of random variables, indexed by (some) set
T, i.e., t∈T, all defined on a common probability space (Ω,F ,Pr) and taking values
in the same measurable space (M,M). Thus, it is common to denote a stochastic
process by using a set-builder notation, that is, as {θt : t∈T}, with θt : Ω→M.

Since any random variable within a stochastic process is actually a function of
two variables, t ∈ T and ω ∈ Ω, with a state space M, sometimes it is useful to
denote this fact explicitly by writing that θt : T×Ω→M.

Since all random variables in a stochastic process are indexed by a set T, which
in this text is exactly the discrete-time set (B.5), to study the properties of a
stochastic process it is useful to consider a stochastic basis, i.e., a probability space
equipped with the filtration (Ft), t∈Tk, of its σ-algebra. Thus, a stochastic basis
(also known as filtered probability space) is simply a quadruple (Ω,F , (Ft) ,Pr).

Recalling that a filtration on Tk is defined as a non-decreasing sequence of σ-
algebras Ft ⊆ F , with t ∈ Tk, we say that a stochastic process θ , {θt : t∈T} is
adapted to (Ft), if the random variable θt : Ω→M is (Ft,M)-measurable for every
t∈Tk [132, p. 97].

The filtration can be interpreted as representing all historical but not future
information available about the stochastic process, with the algebraic object Ft
gaining in complexity with time. Hence, a stochastic process that is adapted to
a filtration (Ft), is also called non-anticipating, i.e., one that cannot see into the
future [133, p. 491].

Markov processes
Stochastic processes describe random phenomena evolving in time.

If a process retains no memory of where it has been in the past, i.e., if only the
current state of a stochastic process can influence where it goes next, then such a
process is called a Markov process.

In other words, a Markov process is a stochastic process that satisfies theMarkov
property (also known as memorylessness), i.e., the conditional probability distribu-
tion of future states of the process (conditional on both past and present states)
depends only on the present state, not on the sequence of events that preceded it.
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More formally, consider a stochastic basis (Ω,F , (Ft) ,Pr) and a measurable
space (M,M). A Markov process θ defined as {θt : t∈T}, where θt : Ω→M, is
referred to as a Markov chain, if it can assume only a finite or countable set of
states [134, p. xiii], i.e., if M is finite or countable, e.g., M⊆Z+.

When T is discrete index set, such as discrete-time set (B.5), a Markov chain is
obviously called discrete-time Markov chain. In this thesis, discrete-time Markov
chains are fundamental mathematical model used to define Markov jump (switched)
linear systems, as explained in Chapter 2.

For any k ∈ T and i ∈ M, the probability distribution of a random variable
θk : Ω→M is its probability mass function pi, i.e.,

pi , Pr(θk= i) = Pr({ω : θk (ω)= i}) (B.79)

Evidently, from the second Kolmogorov’s axiom presented in Subsection B.6, the
total mass of the distribution equals to 1, that is,∑

i∈M
pi = 1

where the summation symbol indicates the sum of the probabilities of all the states
i∈M of the random variable θk.

It is a common practice to give a progressive index as a value associated to each
possible outcome of an experiment in a sample space Ω. For instance, to each face
of a dice is usually associated a positive integer from 1 to 6, which may be seen as
a reward obtained when the rolling of a dice produces the correspondent face. In
such a case, the state space of the discrete random variable is written as

M = {i∈Z+ : i≤N} (B.80)

with N, |M| the cardinality of the state space.
This view of a state space M is useful to represent the (index) set of operational

modes of Markov jump linear systems.
The total mass of the probability distribution of the discrete random variable

θk with the state space M defined by (B.80) is written as∑N

i=1
pi = 1 (B.81)

For a discrete-time Markov chain θ : T×Ω→M with such a state space M, the
Markov property can be formally stated for any sequence (ik), ik∈M, k∈T, as

Pr(θk= ik | θk−1 = ik−1, θk−2 = ik−2, . . . , θ0 = i0) = Pr(θk= ik | θk−1 = ik−1) (B.82)

The right-hand side of (B.82) is the probability of a Markov chain being in a
state ik, conditioned to the fact that at the previous time-step it was in a state
ik−1. This probability is typically denoted ∀i, j∈M as

pij = Pr(θk=j | θk−1 = i) (B.83)
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All possible combinations of pij can be written in a stochastic matrix [pij ]∈RN,N ,
i.e., a matrix P , where any row Pi• is a distribution. In other words, ∀i, j∈M,∑N

j=1
pij = 1 (B.84)

The stochastic matrix P , [pij ] is usually called the transition probability matrix.
The probabilities of transition between the states of a Markov chain in (B.83)

and (B.84) are implicitly independent from k∈T. When that is the case, a Markov
chain is said to be time-homogeneous (or stationary). Formally, for any k ∈ T, a
time-homogeneous Markov chain satisfies the following equivalence

Pr(θk+1 = i | θk=j) = Pr(θk= i | θk−1 =j) (B.85)

Conversely, when (B.85) does not hold for every k ∈ T, the Markov chain is
called time-inhomogeneous, or non homogeneous in time.

Both stationary and time-inhomogeneous Markov chains are characterized by
two parameters.

The first one is an initial probability distribution, which ∀i∈M is denoted by

pi(0),Pr(θ0 = i) (B.86)

For convenience we list initial probability distributions of all states of a Markov
chain in a column vector p0, i.e.,

p0,


p1(0)
p2(0)
...

pN (0)

∈RN,1

The second parameter is a transition probability matrix P (k), [pij(k)], with

pij (k) = Pr(θk+1 =j | θk= i) (B.87)

which for stationary Markov chains is a single, time-independent stochastic matrix.

Markov decision processes
One useful extension of (discrete-time) Markov chains areMarkov decision processes
(hereafter, MDPs). The difference is the addition of actions (allowing choice) and
costs (giving motivation). Conversely, if only one choice exists for each state and
all costs are the same (e.g. "zero"), an MDP reduces to a Markov chain.

Specifically, a Markov decision process is a quintuple (M,A,Pr, g, γ), where

• M is a finite, or countable, (index) set of states – see (B.80);

• A is a finite, or countable, (index) set of actions, i.e., A,{i∈Z+ : i≤M};
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• Pr is state and action dependent transition probability distribution;

• g is a state and action dependent immediate cost;

• γ is a discounting factor, which represents the difference in importance be-
tween future costs and present costs; γ∈R0, γ≤1.

Since taking the discount factor into account does not effect any theoretical re-
sults or algorithms in the finite-horizon case (but might effect the decision maker’s
preference for policies) [135, p. 79], we do not consider a discounting factor here.

Typically, there is a finite number M ∈Z+ of actions that a controller is able
to perform. Generally in any given state i∈M of a Markov decision process, not
all the actions are available. For instance, in a decision problem of the optimal
transmission power management in a wireless communication, the possible actions
available to a controller may be those of increasing or decreasing of a transmission
power; in a finite set of transmission power levels, it is impossible to increase a power
from a maximum level or decrease it from a minimum level. Thus, we represent
this fact by considering for each state i∈M the related set Ai of actions α available
in that state. Obviously, Ai⊆A, and α∈Ai.

The transition probabilities between states of an MDP depend not only upon
a current state of a process, but also on the action taken by a controller. To
define them formally, we consider again a stochastic basis (Ω,F , (Ft) ,Pr) and a
measurable space (M,M). A Markov decision process is then defined by {st : t∈T},
with st : Ω×A→M. For any k∈T, i, j∈M, α∈Ai, the future transition probability
distribution, conditioned on the present state sk of the MDP and the action αk to
be taken from that state, is denoted by

pαij(k) , Pr{sk+1 =j | sk= i, αk=α} (B.88)

Being a probability distribution, pαij(k)∈R0 and satisfies ∀k ∈T, i, j ∈M, and
α∈Ai ∑N

j=1
pαij(k) = 1 (B.89)

For any α 6∈Ai, the action is not available in a given state of the MDP. Hence,
∀j∈M

pαij(k) , 0 (B.90)

Choosing an (available) action in any given state entails a (non-negative) cost,
which is seen as a function g : M×A→ G, where G ⊆ R0 is a set of immediate
costs. For example, increase of the transmission power gives less packet errors, but
implies higher energy consumption and interference with other systems. Thus it
is more expensive, in terms of energy and interference, than transmission with the
same or lower power level.



Appendix C

List of the mathematical symbols

The mathematical symbols used in this thesis are listed in the following tables,
where their meaning is also reported.

C.1 Basic mathematical symbols

First we recall the basic mathematical symbols used throughout the text, reporting
them in Table C.1.

Symbol Meaning

· placeholder indicates the functional nature of an expression without
assigning a specific symbol for its argument

+ addition is denoted by plus symbol∑
summation of a sequence of elements is presented in Sigma notation

− subtraction is indicated by minus sign
multiplication is declared by juxtaposition; so, the product of two
mathematical objects a and b is written as ab.∏

product of a sequence of elements is presented in capital Pi notation
·
· division is specified in fractional notation√
· square root is denoted by radical symbol, a.k.a. radix

· · · intentional omission of values from a pattern is declared by ellipsis,
i.e., by a series of dots.... intentional omission of values from a pattern. . . intentional omission of values from a pattern

end of proof, or QED, i.e., an alphabetism of the Latin phrase
quod erat demonstrandum

Table C.1: Basic mathematical symbols used in the thesis

135



136 APPENDIX C. LIST OF THE MATHEMATICAL SYMBOLS

C.2 Symbols based on equality

This section reports mathematical symbols we use to indicate equality, definition
and inequality, all listed in Table C.2.

Symbol Meaning

= equality asserts that the quantities have the same value, or that the
expressions represent the same mathematical object

, definition is read as "is equal by definition to", "is defined as"
6= inequality asserts that the mathematical objects are different
> greater than is a strict inequality between the values of elements in

an ordered set
≥ greater than or equal to is a relation between the values of elements

in an ordered set
< less than is a strict inequality between the values of elements in an

ordered set
≤ less than or equal to is a relation between the values of elements in

an ordered set

Table C.2: Mathematical symbols based on equality

C.3 Logic symbols

There are several logic symbols used in this thesis. We report them in Table C.3.

Symbol Meaning

S statement is a declarative sentence that is either true or false
∃ existential quantification is interpreted as "there is at least one",

"there exists", or "for some"
∀ universal quantification is interpreted as "given any" or "for all"
∨ logical disjunction, see Subsection B.2
∧ logical conjunction, see Subsection B.2
, comma has the same meaning of ∧
⇒ material implication, see Subsection B.2
: such that can be read also as "with the property that"; it is used

in declaration of functions and in the set-builder notation

Table C.3: Logical symbols used throughout the text
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C.4 Symbols from the set theory

In this section we recall the symbols used in definition of sets. We list them in
Table C.4. See also Subsection B.2 for additional details.

Symbol Meaning

S generic set
{} empty set; see Subsection B.2
() empty sequence; see Subsection B.3
∈ set membership indicates that an element belongs to a set
6∈ set membership indicates that an element does not belong to a set
⊆ subset expresses that LHS set is contained inside RHS set, i.e.,

all elements of LHS set are elements of RHS set
⊂ proper (or strict) subset means that LHS set is a subset of RHS set,

but ∃ element of RHS set which is not an element of LHS set
⊇ superset states that RHS set is contained inside LHS set, i.e., all

elements of RHS set are elements of LHS set
∪ union of sets
∩ intersection of sets
SC complement of a set S
2S power set of a set S
| · | cardinality of a set
\ difference of sets
4 symmetric difference of sets, a.k.a. the disjunctive union
1S indicator function, a.k.a. characteristic function, of a set S, is a

convex function that indicates the membership (or
non-membership) of a given element in that set

× Cartesian product returns a product set of all ordered pairs;
see Subsection B.3 for additional details∏∏∏

Cartesian product of a sequence returns a product set of all
ordered tuples; see e.g. Subsection B.5

(Sk)↗ monotone non-decreasing sequence of sets, i.e., S0⊆S1⊆S2⊆· · ·
(Sk)↘ monotone non-increasing sequence of sets, i.e., S0⊇S1⊇S2⊇· · ·
conv S convex hull of a nonempty set S; see Subsection B.4
max maximum is a greatest element of a (totally ordered) set, or a

largest value of a function
sup supremum of a subset S of a partially ordered set Ω is the least

element in Ω that is greater than or equal to all elements of S, if
such an element exists, i.e., it is least upper bound of S

min minimum is a least element of a (totally ordered) set, or a smallest
value of a function

inf infimum of a subset S of a partially ordered set Ω is the greatest
element in Ω that is less than or equal to all elements of S, if
such an element exists, i.e., it is greatest lower bound of S

Table C.4: Mathematical symbols from set theory
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C.5 Symbols specific to real and complex numbers

For the sake of completeness, we recall the symbols used to deal with real- and
complex-valued variables in Table C.5. See Subsection B.2 for additional details.

Symbol Meaning

R set of real numbers
R0 set of nonnegative real numbers, i.e., {i∈R : i≥0}
R+ set of positive real numbers, i.e., {i∈R : i>0}
C set of complex numbers
F set of either real or complex numbers
| · | absolute value (a.k.a. modulus) of either real or complex number
ı imaginary unit, i.e., a number that satisfies the relation ı2 =−1

Re(·) real part of a complex number
Im(·) imaginary part of a complex number
x̄ complex conjugate of a complex number x

Table C.5: Symbols specific to real and complex variables

C.6 Symbols from linear algebra & functional analysis

We list symbols specific to linear algebra and functional analysis in Tables C.6–C.8.

Symbol Meaning

Fn n-dimensional linear space, with entries in F
Fm,n set of matrices with m rows, n columns, and entries in F, or a

set of linear maps between two linear spaces Fn and Fm
Ai• i-th row of a matrix A∈Fm,n; see Subsection B.4
A•j j-th column of a matrix A∈Fm,n; see Subsection B.4
In identity matrix of size n
AT transpose of a matrix A∈Fm,n; see Subsection B.4
Ā complex conjugate of a matrix A∈Cm,n; see Subsection B.4
A∗ conjugate transpose of a matrix A∈Cm,n; see Subsection B.4
A−1 inverse of a square matrix A∈Fn,n; see Subsection B.4
⊕ direct sum of matrices; see Subsection B.4
⊗ Kronecker product of matrices, or

outer product of (column-)vectors; see Subsection B.4
〈 · , · 〉 inner product; see Subsections B.3; B.4, and B.4

Table C.6: Symbols used in linear algebra
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For the additional details of symbols listed in the following Table C.7, see Sub-
sections B.4–B.4.

Symbol Meaning

Fn,nT set of all symmetric matrices of order n, with entries in F
Cn,n∗ set of all Hermitian matrices of order n
Fn,n∗ set of all either real symmetric or (complex) Hermitian matrices
Fn,n+ set of all positive definite matrices with entries in F
Fn,n0 set of all positive semi-definite matrices with entries in F
NFm,n linear space made up of all N -sequences of m×n matrices

with entries in F
NFn,n+ set of all N -sequences of positive definite matrices of order n
NFn,n0 set of all N -sequences of positive semi-definite matrices of order n
VFN,N set of cardinality V of all square N×N matrices with entries in F
� positive semi-definite, i.e., A�0 means A∈Fn,n0 , and

A�0 stands for A∈NFn,n0
� positive definite, i.e., A�0 means A∈Fn,n+ , and

A�0 stands for A∈NFn,n+
ν eigenvalue of a square matrix
SA spectrum of a square matrix A
σmax(·) largest singular value of a matrix
vec(·) vectorization of a matrix
ρ(·) spectral radius of a square matrix
tr(·) trace of a square matrix
det(·) determinant of a square matrix
vec2(·) vectorization of a sequence of matrices
diag(·) diagonal (resp. block diagonal) matrix obtained by putting the

elements of a vector (resp. a sequence of square matrices) on
the main diagonal

ρ̂(·) joint spectral radius of a set of matrices
lim limit is a value to which all elements of a sequence converge to
→ tends to symbol is used to declare a limit of a sequence
→ function arrow is used to declare a function (for instance, f) by

stating its domain and codomain, e.g. f :R→R
arg argument of a function is an independent variable (defined on a

function’s domain), which represents input or cause, i.e.,
potential reason for variation of the output

Table C.7: Notation from linear algebra and functional analysis
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The notation used to indicate different norms is reported in Table C.8. See also
Subsections B.3, B.4 and B.4, for additional discussion on topic.

Symbol Meaning

‖·‖ any norm in Fn, in NFm,n, or uniform induced norm in Fm,n
‖·‖p p-norm (a.k.a. Lp-norm) or induced p-norm
‖·‖1 1-norm, or induced 1-norm
‖·‖2 Euclidean norm, or induced Euclidean norm
‖·‖max max-norm, or induced max-norm
‖·‖1 `1-norm
‖·‖F Frobenius norm

Table C.8: Symbols used to denote different norms

C.7 Symbols for notable discrete-valued numerical sets

The discrete-valued (i.e., countable) numerical sets (and their notable elements)
used in this thesis are listed and described in the following Table C.9.

Symbol Meaning

Z set of integers
Z0 set of nonnegative integers, i.e., {i∈Z : i≥0}
Z+ set of positive integers, i.e., {i∈Z : i>0}
Q set of rational numbers
T discrete-time set, T=Z0
k discrete-time instant, k∈T
Tk bounded discrete-time set, i.e., {i∈T : i≤k}
T discrete-time horizon, T ∈T
N number of operational modes (a.k.a. discrete states), N ∈Z+
M set of operational modes, M,{i∈Z+ : i≤N}
M number of (discrete) actions, M∈Z+
A set of (discrete) actions, A,{i∈Z+ : i≤M}
Ai set of actions available in an operational mode i∈M, Ai⊆A
α discrete action, α∈Ai
αk action (to be) taken at time instant k∈T, αk∈Ai
V number of vertices of a convex polytope, V∈Z+
Vα number of vertices of a polytope for an action α∈Ai, Vα∈Z+
V index set of vertices of a convex polytope, V,{i∈Z+ : i≤V }
Vαk index set of vertices of a polytope for an αk, i.e., {i∈Z+ : i≤Vαk}
l index of a vertex of a convex polytope, l∈V, or l∈Vαk

Table C.9: Notation for discrete sets and their elements used in the text
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C.8 Symbols from probability theory & measure theory

In the following, we list the mathematical symbols from probability and measure
theories in Tables C.10 and C.11. See Subsections B.5 and B.6, and Sections 2.2,
2.3 and 2.4 for additional details.

Symbol Meaning

Ω sample space is a set of all the possible outcomes of an experiment
Ωx sample space defined by (2.2)
Ωy sample space defined by (2.12)
Ωs sample space defined by (2.19)
ω element of a sample space
F σ-algebra of events, which are the measurable subsets of Ωy

G σ-algebra of events, which are the measurable subsets of Ωx

I σ-algebra of events, which are the measurable subsets of Ωs

M σ-algebra of events, which are the measurable subsets of M
R Borel-σ-algebra is the σ-algebra generated by the open subsets of R
X product Borel-σ-algebra, see Section 2.2
U product Borel-σ-algebra, see Section 2.2
Y product Borel-σ-algebra, see Section 2.2
Z product Borel-σ-algebra, see Section 2.2
(Fk) filtration is a monotone non-decreasing sequence of σ-algebras
(Gk) another filtration
(Ik) yet another filtration
Hn Hilbert space of all Fn-valued G-measurable random variables
`2(Hn) direct sum of countably infinite copies of Hn, it is a Hilbert space
Hn closed linear subspace of `2(Hn); it is a Hilbert space
Hnk family of sequences (ft)kt=0, s.t. ft∈L2(Ωx,Gt,Pr,Fn), ∀t∈Tk
Pr(·) probability measure
| vertical bar is a separator in conditional probability measure

notation; it is read as "given that"
θ discrete-time Markov chain
θx discrete-time Markov chain
θy discrete-time Markov chain
θk random variable

Table C.10: Symbols from probability and measure theories, first part
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Symbol Meaning

ϑ compact notation for θk, ∀k∈T, useful to write e.g., θT−1

E(·) expected value of a random variable
pi(k) probability mass function of θk, i.e., Pr(θk= i) = Pr({ω : θk (ω)= i})
pij(k) probability of θ being next in a state j, conditioned to the fact that

at the current time-step k it is in a state i
P transition probability matrix (TPM), i.e., [pij ]
VP set of vertices of a convex polytope of TPMs
VαP set of vertices of a convex polytope of row TP vectors for an action
s discrete-time Markov decision process (MDP)
p0 vector with initial probability distributions of all states of θ, or s
p0 numerical value of p0

sk random variable
s compact notation for sk, ∀k∈T, e.g., useful to write e.g., sT−1

g immediate cost dependent on state and action in an MDP
G set of immediate costs that depend on state and action in an MDP
pαij(k) future transition probability distribution of an MDP, conditioned on

the present state sk and the action αk to be taken from that
state, i.e., Pr{sk+1 =j | sk= i, αk=α}

Table C.11: Symbols from probability and measure theories, second part

C.9 Symbols from state-space representation

In this final section, we list the symbols used in a state-space model of dynamical
systems studied in the thesis, namely Markov jump linear systems and Markov
jump switched linear systems, in Tables C.12, C.13 and C.14.

Symbol Meaning

nx number of continuous state variables of a system
nu number of continuous control input variables of a system
nv number of process noise variables
ny number of measured continuous state variables, ny≤nx
nw number of observation noise variables
nz number of (measured) system output variables
nx̂ number of state variables of dynamic controller or filter

Table C.12: Symbols for a state-space representation of dynamical systems, part 1
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Symbol Meaning

nẑ number of output variables of dynamic output feedback controller
nx̃ number of state variables of optimal dynamic Markov jump filter
nỹ number of output variables of optimal dynamic Markov jump filter
xk vector of continuous state variables of a system, xk∈Fnx ∀k∈T
uk vector of continuous control input variables, uk∈Fnu ∀k∈T
vk vector of process noise variables, vk∈Fnv ∀k∈T
yk vector of measured continuous state variables, yk∈Fny ∀k∈T
wk vector of observation noise variables, wk∈Fnw ∀k∈T
zk vector of measured system output variables, zk∈Fnz ∀k∈T
x̂k vector of state variables of dynamic controller or filter, x̂k∈Fnx̂

ẑk vector of output variables of dynamic output feedback controller,
ẑk∈Fnẑ ∀k∈T

êk observation (or estimation) error of a generic dynamic filter
x̃k vector of state variables of the optimal dynamic Markov jump filter,

x̃k∈Fnx̃ ∀k∈T
ỹk vector of output variables of the optimal dynamic Markov jump

filter, ỹk∈Fnỹ ∀k∈T
ẽk observation (or estimation) error of the optimal dynamic filter
xk value of xk, ∀k∈T
xe equilibrium point of a dynamical system
ϑk value of the jump variable θk
uk value of uk; it is called continuous control law
UT set of all admissible and measurable controllers
u sequence of (continuous) control laws, i.e., u , (uk)T−1

0 ∈UT
αk value of αk; it is called discrete switching control law
πk hybrid control pair (αk,uk), k∈T
π hybrid control sequence, i.e., (πk)T−1

k=0
πk hybrid control law, i.e., a pair (αk,uk)
π hybrid control policy, i.e., a sequence (πk)T−1

k=0 , (αk,uk)T−1
k=0

A sequence of state matrices, i.e., (Ai)Ni=1∈NFnx,nx , each of which is
associated to an operational mode of the (switching) system

B sequence of input matrices, i.e., (Bi)Ni=1∈NFnx,nu

C sequence of output matrices, i.e., (Ci)Ni=1∈NFnz,nx

D sequence of direct transition (a.k.a. feed-forward or feedthrough)
matrices, i.e., (Di)Ni=1∈NFnz,nu

F sequence of observation matrices, i.e., (Fi)Ni=1∈NFny,nx

G sequence of observation noise matrices, i.e., (Gi)Ni=1∈NFny,nw

H sequence of process noise matrices, i.e., (Hi)Ni=1∈NFnx,nv

Φ sequence of process noise matrices, i.e., (Φi)Ni=1∈NFnx,nv

Table C.13: Symbols for a state-space representation of dynamical systems, part 2
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Symbol Meaning

K(k) sequence of mode-dependent continuous control gain matrices, i.e.,
(Ki(k))Ni=1∈NFnu,nx

L(k) sequence of mode-dependent filter gain matrices, i.e.,
(Li(k))Ni=1∈NFny,nx̃

Â sequence of dynamic controller or filter state matrices, i.e.,
(Âi)Ni=1∈NFnx̂,nx̂ , each one associated to an operational mode

B̂ sequence of input matrices of a dynamic controller, i.e.,
(B̂i)Ni=1∈NFnx̂,ny

Ĉ sequence of output feedback control matrices, i.e., (Ĉi)Ni=1∈NFnu,nx̂

qi(k) expected value of xk for the operational mode θk= i only, see (3.11)
ri(k) expected value of vk for the operational mode θk= i only, see (3.12)
Qi(k) second moment of xk for θk= i only, see (3.13)
Q(k) sequence of matrices of the second moments of xk associated to

each operational mode, i.e., (Qi(k))Ni=1∈NFnx,nx
0 , see (3.14)

Ri(k) second moment of vk for θk= i only, see (3.15)
R(k) sequence of matrices of the second moments of vk associated to

each operational mode, i.e., (Ri(k))Ni=1∈F
nv,nv
0 , see (3.16)

Wi(k) expected value of xkv∗k for θk= i only, see (3.18)
W (k) sequence (Wi(k)) ∈ NFnv,nx

ψ0 expected value of x0 in optimal robust filtering problem, see (4.4)
Ψ0 second moment of x0 in optimal robust filtering problem, see (4.4)
Λ matrix associated to the second moment of xk in stability problem,

see (3.8)
VP set of vertices of a convex polytope of transition probability

matrices, see (2.16)
VΛ set of vertices of the convex polytope of the matrices Λ, see (3.31)
Pj(VΛ) set of all possible products of length j whose factors are elements of

VΛ, see (B.63)
J (·) quadratic cost associated to an optimization problem
ξ index of the solutions of coupled Riccati difference equations
υ vertex of the transition probability matrix for which the cost is

maximum in transition probabilities, see for instance Theorem 5.1

Table C.14: Symbols for a state-space representation of dynamical systems, part 3



Appendix D

State of the art of CPSs’ security:
an automatic control perspective

We have mentioned in both introductory and final chapters of this thesis that
our exposure to and interest in Markov jump linear systems is strongly linked

to our work on security of cyber-physical systems. In this final appendix we report
the main findings of our systematic survey [5] on security in cyber-physical domain.

D.1 A short introduction

Due to the tight cyber-physical coupling and to the potentially disrupting conse-
quences of failures, security is one of the primary concerns in cyber-physical systems.
Our systematic mapping study reported here sheds light on how security is actually
addressed when dealing with cyber-physical systems from an automatic control per-
spective. We provide a map of 118 selected studies which was defined empirically
and is based on, for instance, application fields, various system components, related
algorithms and models, attacks characteristics and defense strategies. It presents a
powerful comparison framework for existing and future research on this hot topic,
important for both industry and academia.

Motivations behind the choice of perspective

Cyber-physical systems (CPSs) security is attracting several research efforts from
different and independent areas (e.g., secure control, intrusion detection in SCADA
systems, etc.), each of them with specific peculiarities, features, and capabilities.
However, if on one side having many research efforts from different and independent
areas on CPSs security confirms its importance from a scientific point of view, on
the other side it is very difficult to have a holistic view on this important domain.
Under this perspective, even if the progress of research on cyber-physical systems
has started more than ten years ago and the various research communities are
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very active, the trends, characteristics, and the validation strategies of existing
research on CPS security are still unclear. The aim of this survey is to fill this gap.
CPS security is presently investigated in a number of scientific (e.g. in embedded
systems and wireless sensor networks) communities from different points of view.
In this report we focus on research on CPS security from the point of view of
the automatic control scientific community. A first motivation for our choice is
that most application domains where CPS security is an issue consist of/include
distributed feedback-based automation systems. In addition to this, a peculiar
characteristic of the automatic control research is the attempt to combine in a
unifying mathematical framework physical components (e.g. electrical/electronic
devices, vehicles, and industrial automation machineries) and cyber components
(e.g. SCADA systems, communication protocols, and real-time software) of the
CPS, as well as to define rigorous performance and robustness/resilience metrics
on security properties based on such unifying mathematical framework.

Methodology

Goal of our survey is to identify, classify, and analyze existing research on CPS
security from an automatic control perspective, in order to better understand how
security is actually addressed when dealing with cyber-physical systems. To tackle
this goal, we have used a well-established methodology from the medical and soft-
ware engineering research communities called systematic mapping [7, 8] (see Sec-
tion D.2), applying it on the peer reviewed papers which propose and validate a
method or technique for CPS security enforcing or breaching. Through our system-
atic mapping process, we selected 118 primary studies among more than a thousand
entries fitting at best three research questions we identified (see Subsection D.2).
Then, we defined a classification framework composed of more than 40 different
parameters for comparing state-of-the-art approaches, and we applied it to all se-
lected studies. Finally, we analyzed and discussed the obtained data for extracting
emergent research challenges and implications for future research on CPS security.

Contributions

The main contributions of this study are:

• a reusable comparison framework for understanding, classifying, and com-
paring methods or techniques for cyber-physical systems security from an
automatic control perspective;

• a systematic review of current methods or techniques for automatic control
for CPS security, useful for both researchers and practitioners;

• a discussion of emerging research challenges and implications for future re-
search.
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To the best of our knowledge, this work presents the first systematic investigation
into the state of the art of research on CPS security from an automatic control per-
spective. The results of this study provide a complete, comprehensive and replicable
picture of the state of the art of research on CPS security, helping researchers and
practitioners in finding trends, characteristics, and validation strategies of current
research on security-aware cyber-physical (co-)design, intrusion detection, forecast
and response, its future potential and applicability.

Main findings
The main findings produced by our analysis are discussed below.

Publication trends: even if the need for methods and techniques for CPS
security has emerged only in 2008, in the last years there is an increasing need
and scientific interest on methods and techniques for CPS security. Also, CPS
security is turning more and more into a mature field, with more foundational
and comprehensive studies published in the recent years. Cyber-physical systems
security has a very multidisciplinary nature and it has been broadly considered by
researchers with different research interests, such as smart grid, automatic control,
communications, networked systems, parallel and distributed systems, etc.

Characteristics and focus: the bulk of the works on CPS security is focused
on power grids, while somehow surprisingly, we have not found any work on the
cyber-physical security of medical CPS, and only a small part of selected papers
is within the application field of secure control of (unmanned) ground vehicles and
aerial systems, and of heating, ventilation, and air-conditioning in large functional
buildings. All the works considered in this mapping study deal with attacks, in
order to either implement or to counteract them: putting together all this studies
gives us the possibility to categorize the existing (cyber-physical) attack models.
The defense strategies are presented in most of the studies, occupying the central
spot of the research efforts on CPS security. More than 90% of the works are
concerned with system integrity, threatened by various types of deception attacks.
Regarding the considered system components, the approaches considering attacks
on sensors and their protection completely dominate the scene; in fact the resilient
state estimation under measurement attacks is a very active research topic within
the area of CPS security. Somehow unexpectedly, very few papers consider commu-
nication aspects or imperfections and attempt to provide non-trivial mathematical
models of the communication; the centralized schemes dominate both attack and
defense solutions.

Validation strategies: most advanced and realistic validation methods have
been exploited in the power networks application domain, but even there a bench-
mark is still missing. Even if the repeatability process, capturing how a third party
may reproduce the validation results of the method or technique, is recognized as a
good scientific practice, we found no studies providing a replication package. So, we
put a particular attention on analysis and description of standard test systems and
experimental testbeds used by researchers studying various aspects of CPS security.
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By presenting and discussing the above mentioned results we are the first to
provide an overview of the state of the art of research in CPS security from an
automatic control perspective, thus our work can certainly be useful for both re-
searchers (either young or experienced ones) and practitioners in the field of CPS
security. Finally, we use the results of this study for discussing potential implica-
tions for future research on automatic control for CPS security.

Outline of the rest of appendix

Appendix D is organized as follows. Section D.2 describes in details our research
methodology in designing, conducting, and documenting the study (and readers
principally interested in the results of our survey and future research directions may
directly jump to subsequent sections and come back to this section after the first
read of the material), followed by a discussion of the obtained results in Sections D.3,
D.4 and D.5. We discuss the implications for future research on cyber-physical
security in Section D.6, and related work in Section D.7. Section D.8 closes the main
part of Appendix D. Then, the list of the selected primary studies is provided in
supplementary Section D.9, while the additional details on our search strategy can
be found in Section D.10. In Section D.11 we discuss some additional characteristics
of our primary studies, which are not related to CPS security per se, but are still
useful to better understand this scientific area. Ultimately, Section D.12 describes
limitations and threats to validity of our results.

D.2 Systematic mapping study methodology

A systematic mapping study (or scoping study) is a research methodology particu-
larly intended to provide an unbiased, objective and systematic instrument
to answer a set of research questions by finding all of the relevant research outcomes
in a specific research area (CPS security in our paper) [7]. Research questions of
mapping studies are designed to provide an overview of a research area by classify-
ing and counting research contributions in relation to a set of well-defined categories
such as publication type, forum, frequency, assumptions made, followed research
method, etc. [8, 136]. The mapping process involves searching and analyzing the
literature in order to identify, classify, and understand existing research on a specific
topic of interest.

In the recent years many researchers are conducting systematic mapping stud-
ies on a number of areas and using different guidelines or methods (e.g., on tech-
nical debt [137], search-base software engineering [138], model-driven engineering
for wireless sensor networks [139]). In a recent study [7] it emerged that at least
ten different guidelines have been proposed for designing the systematic mapping
process. We conducted our study by considering the two most commonly accepted
and followed guidelines according to [7], specifically: the ones proposed by Kitchen-
ham and Charters [8] and Petersen et al. [136], respectively. Also, we refined our
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mapping process according to the results of a consolidating update on how to con-
duct systematic mapping studies proposed by Petersen et al. in [7]. Finally, due
to the various specificities of existing research on CPS (e.g., the presence of many
different definitions of CPS, the intrinsic multidisciplinarity of existing research on
CPS, etc.), we found it appropriate to tailor the method and classification schemes
proposed in the guidelines according to our topic. The method we followed in our
systematic mapping study is detailed in the rest of this section.

In order to establish the need for performing a mapping study on security for
cyber-physical systems, we searched (on January 5, 2015) a set of electronic data
sources (i.e., those listed in Subsection D.2), for systematic studies on security-aware
cyber-physical co-design, self-protection and related security mechanisms specific
to CPS without any success. None of the retrieved publications was related to any
of our research questions detailed in Subsection D.2. So, we can claim that our
research complements the related works described in Section D.7 to investigate the
state-of-research about cyber-physical systems security.

The process we followed for carrying on our study can be divided into three main
phases, which are the well-accepted ones for performing a systematic study [8, 140]:
planning, conducting, and documenting.

In order to mitigate potential threats to validity, some produced artifacts in
each phase have been circulated to external experts for independent review. More
specifically, we identified two classes of external experts: systematic mapping stud-
ies experts who focused on the overall design of the study and domain experts
focusing more on aspects related to security for cyber-physical systems. One sys-
tematic mapping study expert and two experts of CPS security reviewed our review
protocol and final report independently and we refined them according to their feed-
back. In the following we will go through each phase of the process, highlighting
its main activities and produced artifacts.

Planning
In this phase we identified the main research questions (see Subsection D.2) and
we produced a well-defined review protocol describing in details the various steps
of our study.The final version of the review protocol is publicly available as part of
the replication package of this study at the following hyperlink:

http://cs.gssi.infn.it/CPSSecurity.

Conducting
In this phase we set the previously defined protocol into practice. More specifically,
we performed the following activities:

• Studies search: we performed a combination of techniques for identifying
the comprehensive set of candidate entries on automatic control for CPS se-
curity (see Subsection D.2).

http://cs.gssi.infn.it/CPSSecurity
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• Studies selection: we filtered candidate entries in order to obtain the final
list of primary studies to be considered in later activities of the review (see
Subsection D.2).

• Comparison framework definition: we defined the set of parameters for
comparing the primary studies. The main outcome of this activity is a docu-
ment explaining the possible values and the meaning of each parameter (see
Subsection D.2).

• Data extraction: we went into the details of each primary study and ex-
tracted data according to the comparison framework defined in the previous
activity (see Subsection D.2).

• Data synthesis: we elaborated on the extracted data in order to address
each research question of our study. This activity involved both quantitative
and qualitative analysis of the extracted data (see Subsection D.2).

Documenting

The main activities performed in this phase are:

• a thorough elaboration on the data extracted in the previous phase with the
main aim at setting the obtained results in their context,

• the analysis of possible threats to validity, and

• the writing of a set of reports describing the performed mapping study to
different audiences.

Produced reports have been evaluated by experts on systematic mapping studies
and cyber-physical systems (this appendix itself is an instance of produced final
report).

Research questions

It is fundamental to clearly define the research questions (abbreviated to RQ) of a
systematic literature study [141]. The research questions of this study are:

• RQ1: What are the publication trends of research studies on automatic control
for cyber-physical systems security?
Objective: to classify primary studies in order to assess interest, relevant
venues, and contribution types.

• RQ2: What are the characteristics and focus of existing research on auto-
matic control for CPS security?
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Objective: to analyze and classify all the existing approaches for automatic
control for CPS security with respect to the specific concerns they want to ad-
dress (e.g., cyber and physical security, secure control, model-based intrusion
detection, or any combination of them).

• RQ3: What are the validation strategies of existing approaches for automatic
control for cyber-physical systems security?
Objective: to analyze and classify all the existing approaches for automatic
control for CPS security with respect to the strategies used for assessing their
validity (e.g., controlled experiment, industrial application, prototype-based
experiment, test bed, simple examples, formal proofs).

Answer to RQ1 gives a detailed overview about publication trends, venues, and
research groups active on the topic. The classification resulting from our investi-
gation on RQ2 and RQ3 provides a solid foundation for a thorough comparison
of existing and future solutions for CPS security via automatic control. These
contributions are especially useful for researchers willing to further contribute this
research area with new approaches to CPS security or willing to better understand
or refine existing ones.

Search strategy
In order to achieve maximal coverage, our search strategy consisted of three com-
plementary methods: an automatic search, manual search, and snowballing. Fig-
ure D.1 shows the details about our search strategy.

Automatic search

Automatic search refers to the execution of a search query on a set of electronic
databases and indexing systems [142]. As shown in Figure D.1, our automatic search
is performed on the largest and most complete scientific databases and indexing
systems available in computer science. The applied search string is the following:

(((("cyber physical" OR "cyber-physical" OR cyberphysical OR
"networked control") AND system*) OR CPS OR NCS) AND (attack* OR

secur* OR protect*)).
In the spirit of Zhang, Ali Babar and Tell [143], we established a quasi-gold stan-

dard for creating a good search string for the automatic search (see Section D.10).
Our automatic search resulted in 1559 potentially relevant studies.

Manual search

By following the quasi-gold standard procedure defined in [143], we

• identified a subset of important venues for the domain of automatic control
for cyber-physical systems security (they are provided in Section D.10), and
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Figure D.1: Overview of the search and selection process

• performed a manual search of relevant publications in those venues.

By referring to Figure D.1, we manually searched and selected 289 potentially
relevant studies and, after merging all the studies and removing duplicates we
obtained 1848 potentially relevant studies.

In order to further restrict the number of studies to be considered during the
snowballing activity, we applied the selection process depicted in Subsection D.2 to
the current set of studies, thus obtaining 63 potentially relevant works.

Snowballing

We applied (backward and forward) snowballing on the 63 studies for identifying
additional sources published in other journals or venues [144] which may not have
been considered during the automatic or manual searches.

For the sake of replicability, we provide all the details, data, and results of our
search strategy in the publicly available replication package of this study.

Selection strategy
We considered all the collected studies and filtered them according to a set of well-
defined inclusion and exclusion criteria. In the following we provide the inclusion
(I) and exclusion (E) criteria of our study:

• I1: Studies focusing on security of cyber-physical systems.

• I2: Studies proposing an method or technique for CPS security enforcing or
breaching based on automatic control.
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• I3: Studies providing some kind of validation of the proposed method or
technique (e.g., via formal analysis, controlled experiment, exploitation in
industry, example usage).

• E1: Studies not subject to peer review [140] (e.g., journal papers are consid-
ered, whereas white papers are discarded).

• E2: Studies written in any language other than English.

• E3: Studies focusing on security method or technique not specific to CPS
(e.g studies focusing on either the physical or cyber part only of the system
under consideration).

• E4: Studies published before 2006 (because the CPS discipline has emerged
in 2006).

• E5: Secondary or tertiary studies (e.g., systematic literature reviews, surveys,
etc.).

• E6: Studies in the form of tutorial papers, short papers, poster papers, edi-
torials, because they do not provide enough information.

A study was selected as a primary study if it satisfied all inclusion criteria,
and it was discarded if it met any exclusion criterion. In order to reduce bias,
the selection criteria of this study have been decided during the review protocol
definition (thus they have been checked by three external reviewers). By following
the approach proposed in [145], two researchers classified each potentially relevant
study either as relevant, uncertain, or irrelevant; studies classified as irrelevant have
been excluded, whereas all the other approaches have been discussed with the help
of a third researcher.

When reading a primary study in details for extracting its information, re-
searchers could agree that the currently analyzed study was semantically out of the
scope of our research, and so it has been excluded (see the Exclusion during data
extraction stage in Figure D.1), resulting in 194 potentially primary studies.

As suggested in [140], if a primary study was published in more then one pa-
per (e.g., if a conference paper has been extended to a journal version) then we
considered only one reference paper as primary study; in those cases we considered
all the related papers during the data extraction activity in order to obtain all the
necessary data [8]. The final set of primary studies is composed of 118 entries after
a duplicates merging step.

Data extraction
Data extraction refers to the recording of all the relevant information from the
primary studies required to answer the research questions [140]. Before analysing
each primary study, we defined a comparison framework for classifying research
studies on cyber-physical systems security from an automatic control perspective.
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To help the definition of a sound and complete comparison framework, we se-
lected and adapted suitable dimensions and properties found in existing surveys
and taxonomies related to CPS security, such as those proposed in [146–148]. In
addition, we defined several parameters for classifying methods and techniques for
CPS security; we grouped those parameters into three main dimensions: method
or technique’s positioning, characterization, and validation.

The positioning dimension characterizes the objectives and intent of existing
research on CPS security (the "what" aspect of each method or technique).

The characterization dimension concerns the classification of studies based
on "how" CPS security is addressed in research on automatic control.

Finally, the validation dimension concerns the strategies researchers apply for
providing evidence about the validity of proposed methods or techniques.

All the dimensions and parameters of our comparison framework have been en-
coded in a dedicated data extraction form, which can be seen as the implementation
of a comparison framework. For the sake of brevity we do not provide the descrip-
tion of all the parameters of our data extraction form, we will briefly elaborate on
each of them while discussing the results of this study. As suggested in [140], the
data extraction form (and thus also the classification framework) has been indepen-
dently piloted on a sample of primary studies by two researchers, and iteratively
refined accordingly. Then, the data extraction activity has been conducted by two
researchers.

Data synthesis

The main goal of our data synthesis activity is to understand, analyze, and classify
current research on automatic control for CPS security [8, § 6.5]. Depending on the
parameters of the classification framework (see Subsection D.2), in this research we
applied both quantitative and qualitative synthesis methods. We applied standard
descriptive statistics for analysing quantitative data, whereas we applied the line
of argument synthesis for qualitative data [140].

In the following sections we present the results of our analysis of the extracted
data. In total 118 publications have been selected and analyzed as the subjects of
our study. For the sake of clarity we organized the results of the analysis according
to our research questions (see Subsection D.2).

D.3 Results - Publication trends (RQ1)

In order to assess the publication trends about security for cyber-physical systems
we identified a set of variables focusing on the publication and bibliographic data
of each primary study. In the following we describe the main facts emerging from
our analysis.
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Publication timeline
Figure D.2 presents the distribution of the selected publications1 on security for
cyber-physical systems over the time period from 2006 to 2015.

Figure D.2: Distribution by year (partial data for 2015)

The first interesting result of our study is the growth of the number of those
publications in the last years. Indeed, we can observe that there was a relatively
low number of publications on this topic over the time period from 2006 (zero
publications) to 2010 (5 publications). Starting from 2011, we see a continuous
growing trend over the years, culminating in the 2014 and 2015 years, which to-
gether amount for the 61.8% of the selected studies. From the collected data, we
can offer the following observations:

• there are no selected studies until 2009; this may be because the main concepts
and research interest on CPS emerged only around 2006 [14], and the need
for methods and techniques for CPS security has emerged only recently;

• there is a sharp increase in the number of selected studies between 2012 and
2014; we can trace this observation to the fact that (i) in the last years
methods and techniques for CPS security are gaining increasing interest and
attention from a scientific point of view and (ii) methods and techniques for
CPS security are getting urgently needed to produce industry-ready systems
with the required levels of security and reliability;

• our study covers the studies published before April 2015; nevertheless, in this
year 31 studies have been already published on CPS security, representing the
26.4% of the whole set of primary studies of our research; this result further
confirms the growing attention and need of research on cyber-physical systems
security; we expect that this growing trend will continue;

1See Subsection D.2 for details on selection strategy, which, of course, determined the results
presented here.
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• finally, we can notice that 117 (99.2%) out of the 118 selected studies were
published during the last five years; this can be seen as an indication that
CPS security is a relatively new area, which is gaining more and more traction
from a scientific point of view; this observation is further strengthened by the
fact that the highest slope is between 2013 and 2014, where the number of
publications has more than doubled, going from 18 (15.3%) to 43 (36.4%).

Figure D.3 shows the distribution of targeted types of venues over the years
(considering partial data for 2015). The most common publication types are jour-
nal and conference, with 59 (50.01%) and 50 (42.37%) of the primary studies,
respectively. Book chapter and workshop are the least popular publication types,
with only 6 (5.08%) and 3 (2.54%) studies falling into their categories, respectively.
Such a high number of journal and conference papers on CPS security may indicate
that cyber-physical systems security is becoming more and more a mature research
theme, despite its relative young age (the first publication on CPS security was in
2009). Additional considerations on publication venues and on research institutions
are provided in Section D.11.

Figure D.3: Types of publications over the years

D.4 Results - Characteristics & focus of research (RQ2)

As already introduced in Subsection D.2, we identified a set of variables describ-
ing positioning and characterization of methods and techniques for cyber-physical
systems security breaching and/or enforcing. With the purpose of evaluating what
aspects of system are attacked or protected by an approach, in the following we
indicate which application fields, points of view, security attributes, system compo-
nents, plant models, state estimation and anomaly detection algorithms, controllers,
communication aspects and network-induced imperfections are considered by each
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primary study. Furthermore, we give an account of attacks and their character-
istics, attack and defense schemes, plant models used by an attacker and defense
strategies, in order to understand how these methods and techniques are charac-
terized.

CPS application field

As we can see from Figure D.4, 65 out of 118 primary studies are focused exclusively
on power grids, which corresponds to the 55.08% of all selected studies. Among
those, as shown in Figure D.5, 45 papers (i.e., 38.14% of all the selected studies) deal
exclusively with power transmission, 8 studies address the security aspects of the
electricity market ([S061-S068]), 3 studies are focused on power distribution ([S018,
S032, S056]), 2 studies on power generation ([S005, S024]), and the remaining 7 on
any combination of the previous ones ([S002, S013, S028, S030, S049, S050, S059]).

Figure D.4: Distribution of studies by application area

The second largest group of publications in Figure D.4 counts 28 works, i.e.,
23.73% of the whole set of primary studies of our research. All these papers study
the security of generic linear dynamical systems. The proposed approaches can be
used in any suitable application. However, these works do not provide examples of
a particular application.

The last group of the remaining 25 studies is detailed in Figure D.6. These works
are almost uniformly distributed among the following applications: (unmanned)
ground vehicles (UGV) accounting for 6 of primary studies ([S084, S097, S099,
S106, S111, S115]); (unmanned) aerial systems (e.g. unmanned aerial vehicles, air
traffic management systems) and hydro-systems relying on automatic control, both
considered in 5 papers ([S082, S090, S093, S108, S114] and [S010, S072, S078, S081,
S083], respectively); generic (linear and non linear) dynamical systems and linear
dynamical systems with applications to power grids, both found in 4 studies ([S035,
S080, S096, S113] and [S048, S079, S100, S118], respectively). It is worth noting
that UGV-based systems deal with the navigation and control of teleoperated and
autonomous ground vehicles, together with their supervisory control and vehicle
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Figure D.5: Distribution of primary studies applied in power grids

platooning. Finally, the security of building automation applications is investigated
in one primary study ([S088]).

Figure D.6: Number of studies in other application fields

From the collected data, we can offer the following observations:

• the bulk of the selected works on security for cyber-physical systems is focused
on power grids; this is not surprising, and may be due to the fact that smart
grids are recognized as a driver for sustained economic prosperity, quality of
life, and global competitiveness of a nation, attracting big research efforts to
this area as a whole; also, the models used in this domain are well-known and
the famous false data injection attack [S001] has been introduced in the con-
text of power networks, giving traction to this kind of research applications.
Moreover, the impressive market growth in renewable energy devices posed
novel challenging problems in the design and management of power grids: as
a consequence, the interest of energy providers on novel methods and tech-
nologies for optimizing network management with guaranteed performance,
safety, and security provided a tremendous boost to academic research on
these topics;

• only a small part of the selected papers presents the applications to the secure
control of (unmanned) ground vehicles and aerial systems, and of heating,
ventilation, and air-conditioning (HVAC), as well as lighting and shading, in
large functional buildings; this application fields are relatively new for the
approaches to the cyber-physical security, with the first studies appearing
only in 2012; this result can be seen as indication of a potentially interesting
direction for future research on CPS security;



D.4. RESULTS - CHARACTERISTICS & FOCUS OF RESEARCH (RQ2) 159

• somehow surprisingly, we have not found any work focused on the cyber-
physical security of medical CPS [149]. We suppose that the topics of physio-
logical close-loop control and patient modeling are seen as not mature enough
to consider the security aspects specific to this important application field
from the control-theoretic point of view. In any case, we expect that these
topics will be considered and addressed in the near future.

Point of view

As reported in Figure D.72, we distinguish primary studies based on whether they
treat approaches for security breaching (i.e., attack) or enforcing via some kind
of countermeasures (i.e., defense), or both. From our analysis it emerged that 62
studies over 118 focus exclusively on the various countermeasures that a CPS may
put in place in response to an attack, whereas 28 studies (i.e., 22.88% of the total)
focus exclusively on vulnerability analysis by proposing or improving an attack
scheme using an adversary’s point of view. They do not study the topic of the
risk treatment, which is peculiar to the designer’s or operator’s perspective. The
remaining 28 works treat both attack and defense strategies.

Figure D.7: Distribution by the adopted point of view

From this result we can observe that the defense strategies are presented in
most (76.27%) of the selected studies, occupying the central spot of the research
efforts on CPS security. A more detailed discussion of the various defense strategies
proposed in research is provided in Subsection D.4.

2In this work we use area-proportional Euler diagrams for visualizing the distribution over
parameters with multiple values in which the discussion of their intersections is relevant for this
study.
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Considered security attributes

Security can be seen as a composition of three main attributes, namely: confi-
dentiality, integrity and availability [147]. Accordingly, we identified the security
attributes considered by each primary study in order to understand how those at-
tributes have been investigated by researchers on CPS security. Figure D.8 shows
the distribution of the primary studies across confidentiality, integrity, and avail-
ability.

Figure D.8: Distribution by security attributes

The first thing that strikes the eye is that more than 90% of the works are con-
cerned with CPS integrity, threatened by various types of deception attacks. Some
of these works consider also the availability and/or confidentiality, together with
integrity. On the contrary, only two studies ([S068, S105]) focus on the combination
of solely availability and confidentiality; those papers apply game theory to the de-
sign of countermeasures to intelligent jamming attacks, which have been published
between the fall 2014 and 2015. For further discussion of security attributes, see
Subsection D.4.

System components

Each approach to security breaching or enforcing considers a particular set of sys-
tem components to be compromised or protected. In our analysis we identified five
main categories for describing the main system components to be compromised or
protected, that are: sensors, actuators, network, controllers, plant. As an example,
false data injection mainly targets a set of sensors, while load altering can attack a
set of actuators. As for all deception and some disruption attacks, we should “note
that from a practical point of view, an attack on a sensor could either be interpreted
as an attack on the node itself (making it transmit an incorrect signal), or it could
also be interpreted as an attack on the communication link between the sensor and
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the receiver device; similarly an attack on an actuator could either be interpreted as
an attack on the actuator itself, or on the communication link from the controller
to the actuator” [S079]. Thus, we say that an approach considers a network ei-
ther when it does it implicitly by considering a denial-of-service (DoS) attack on
communication links, or explicitly, by exploiting transmission scheduling, routing
or some network-induced imperfections. Following the same line of reasoning, we
say that the work takes into account a controller when it proposes a novel one,
whereas the plant category comes into play with attacks at the physical layer and
with eavesdropping.

Figure D.9 presents how system components have been considered among the
primary studies. Sensors were taken into account 100 (84.75% of) times, 62 (52.54%
of) times alone and 27 (22.88% of) times together with actuators. The actuators
themselves were considered 33 (27.97% of) times, while network was taken into
account in 29 (24.58% of) studies. This data suggests that the approaches con-
sidering attacks on sensors and their protection completely dominate the scene.
All the other system components have received much less attention, with a slight
predominance of actuators and network.

Figure D.9: Distribution of studies by system components

Plant model
We have seen in Subsection D.4 that the application domain of research on cyber-
physical systems security is mainly divided between power grids and all the others.
This result is reflected also in the choice of the mathematical models used to describe
the physical domain.

In particular, power transmission is traditionally studied via a power flow model,
which is a set of equations that depict the energy flow on each transmission line of a
power grid. An AC power flow model considers both real and reactive power and is
formulated by nonlinear equations, where the state variables are voltage magnitudes
and phase angles of the buses [150, 151]. However, state estimation using an AC
power flow model can be computationally expensive and does not always converge
to a solution. Thus, power system engineers sometimes use a linearized power flow
model, DC power flow model, to approximate the AC power flow model [S001].
In DC model the reactive power is completely neglected and state variables only
consist of voltage phase angles of the buses. As of power generation, the model based
on equations describing the electromechanical swing dynamics of the synchronous
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generators [152] is usually applied. In other application domains more general linear
time invariant (LTI) or nonlinear dynamical models are used.

Figure D.10 shows how the above mentioned models have been used within
the set of primary studies. The DC approximation of power flow has been used
in 53 works (44.92% of whole set), while the more complicated and realistic AC
power flow model (which is capable to capture more subtleties) has been studied
16 (13.56% of) times. In 6 studies both the AC power flow model and its linear
DC approximation have been used ([S023, S028, S030, S051, S056, S057]). Other
LTI models were applied in 51 (43.22% of) primary studies. Nonlinear dynamic
and swing-equation based models were applied 13 (11.02%) and 7 (5.93 % of) times,
respectively.

Figure D.10: Distribution of studies by plant model

Process noise

To capture any deviation in the plant model from the real dynamics of the controlled
physical system, the process noise is used; from the primary studies it emerged that
it can be categorized into 3 main classes: Gaussian, bounded (non-stochastic), and
noiseless.

Figure D.11: Distribution of studies by process noise

The distribution of primary studies by process noise is reported in Figure D.11,
where the studies considering the measurement model only (62, accounting for
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52.54% of the whole set of selected papers) were not included, since for them the
facet of process noise is not applicable. We can see that the noiseless and Gaussian
process noise models are the most used ones (accounted 30 and 25 times, respec-
tively). As shown in Figure D.12, the bounded non-stochastic model (used 8 times)
is starting to receive a growing attention in the very last years.

Figure D.12: Number of studies with bounded process noise year by year (partial
data for 2015)

Measurement noise
Depending on the assumptions on the noise, sensor measurement models can be
broadly categorized into three classes: Gaussian, bounded (non-stochastic) and
noiseless [S116]. As shown in Figure D.13, the majority of primary studies (78, i.e.,
66.10%) uses Gaussian measurement noise model; while 38 (32.20% of all) works
assume noiseless measurements. Only 8 works have used bounded (non-stochastic)
assumptions. Similarly for the bounded process noise, the bounded measurement
noise has started to gain attention only recently in the CPS security domain, as we
can see from Figure D.14.

Figure D.13: Distribution by measurement noise

If a study does not consider the measurement model (e.g., when the work is
not related to the secure state estimation against sensor attacks), we say that the
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Figure D.14: Number of studies with bounded measurement noise year by year
(partial data for 2015)

measurement noise is not applicable. Among the selected primary studies there
were 6 such studies.

State estimation

For many situations, it may be unrealistic or unfeasible to assume that all the
states of the system are measured. In fact, 89 studies were using some kind of
state estimation (SE), which corresponds to 75.42% of all the primary studies (see
Figure D.15). The most used SE method is weighted least squares (WLS), found in
54 (45.76% of all) works (interestingly, all 54 studies were related to power grids).
The WLS method for power system SE is optimal under Gaussian measurement
noise [S057] and, in case of DC approximation of power flow, leads to an estimator
identical to the one obtained with maximum likelihood or with minimum variance
methods [S001]. The (extended) Kalman filter was used in 21 studies (17.80% of all
primary studies), while the (extended) Luenberger observer was used in 10 studies
(8.47%), the H∞ filter in 2 studies ([S087, S093]) and the least trimmed squares
estimator in only one study ([S057]). Novel solutions for the SE were proposed in
17 (14.41%) studies.

Figure D.15: Distribution of primary studies by state estimation (SE)

Novel methods range from application-specific solutions [S024, S072], distributed
state estimation techniques for power networks [S011, S014, S025], to generic attack-
resilient solutions inspired by Kalman filter [S091, S106, S116].
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Within the domain of power grids, Giani et al. [S015] proposes SE based coun-
termeasures to coordinated sparse attacks on power meter readings, that take ad-
vantage of graph-theoretic construct of observable islands, which are disjoint subsets
of buses sharing the same perceived change of state [voltage phase] under the at-
tack. As a countermeasure to leverage point attacks against WLS SE in smart grid,
Tan et al. [S049] introduces a modified robust Schweppe-Huber Generalized-M es-
timator. The WLS estimation method for power networks has been extended by
Liu et al. [S054] by merging cyber impact factor matrix into the state estimation
as a reasonable adjustment of the weight values, in order to create the abnormal
traffic-indexed SE.

Regarding generic CPS, to estimate the state of the plant despite attacks on
sensors and actuators, Fawzi et al. [S079] propose an efficient state reconstructor
inspired from techniques used in compressed sensing and error correction over the
real numbers. Pajic et al. [S099] show that implementation issues such as jitter,
latency and synchronization errors can be mapped into parameters of the SE proce-
dure that describe modeling errors, and provides a bound on the SE error caused by
modeling errors. Mo and Sinopoli [S096] constructs an optimal estimator of a scalar
state that minimizes the “worst-case” expected cost against all possible manipu-
lations of measurements by the attacker, while Weimer et al. [S102] introduces a
minimum mean-squared error resilient (MMSE-R) estimator for stochastic systems,
whose conditional mean squared error from the state remains finitely bounded and
is independent of additive measurement attacks.

Lastly, for linear dynamical systems under sensor attacks, Shoukry and Tabuada
[S111] present an efficient event-triggered projected Luenberger observer for systems
under sparse attacks, and Shoukry et al. [S117] develop an efficient algorithm that
uses a satisfiability modulo theory (SMT) approach to isolate the compromised
sensors and estimate the system state despite the presence of the attack.

Together, these results are an indication that the resilient state estimation under
measurement attacks is a very active research topic within the area of CPS security,
making us reasonably confident about its future development and potential.

Anomaly detector

Current state estimation algorithms use bad data detection (BDD) schemes to
detect random outliers in the measurement data [S006]. Two of the most used
BDD hypothesis tests are the performance index test (also known in power system’s
community as J(x̂)-test or χ2-test) and the largest normalized residual test (often
referred as rNmax-test) [150]. As shown in Figure D.16, among our primary studies
there are 58 approaches considering performance index test, 22 approaches dealing
with normalized residual test, and 13 considering both aforementioned hypothesis
tests.

Also, two studies consider an arbitrary anomaly detector implemented by the
controller and deployed to detect possible deviations from the nominal behavior
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[S081, S101], while 36 (30.51%) primary studies do not deal at all with anomaly
detection.

In an effort to minimize the detection delay, the change detection can be formu-
lated as a quickest detection problem. Page’s cumulative sum (CUSUM) algorithm
is the best-known technique to tackle this type of problem. There are 5 selected
primary studies, that propose or use a CUSUM-based attack detection schemes
[S007, S016, S035, S060, S075]. There are also 26 (22.03%) studies, that propose
other novel anomaly detection approaches, either considering them together with
the performance index test or normalized residual test.

Figure D.16: Distribution of primary studies by anomaly detection

The novel solutions for bad data detection cover the topics of distributed moni-
toring [S010, S011, S014, S029] and application-specific anomaly detection for multi-
agent distributed flocking formation control [S024], automated cascade canal irri-
gation systems [S072], wireless control networks, “where the network itself acts as
the controller, instead of having a specially designated node performing this task”
[S074], multi-hop control networks, “where the communication between sensors,
actuators and computational units is supported by a (wireless) multi-hop commu-
nication network and data flow is performed using scheduling, routing and network
coding of sensing and actuation data” [S088], and air transportation systems [S108].

In the power system domain, Kosut et al. [S002] proposes a generalized like-
lihood ratio detector, that incorporates historical data and does not compute ex-
plicitly the residue error, while Gu et al. [S058] introduces a new method to detect
false data injection attacks against AC state estimation by tracking the dynamics
of measurement variations: the Kullback–Leibler distance (KL divergence, known
also as relative entropy) is used to calculate the distance between two probability
distributions derived from measurement variations.

The KL divergence is adopted also by Mo et al. [S070, S112] in designing the
optimal watermark signal in the class of stationary Gaussian processes, which is
used to derive the optimal Neyman–Pearson detector of reply and covert attacks,
respectively.
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Valenzuela et al. [S031] use principal component analysis (PCA) to separate
power flow variability into regular and irregular subspaces, with the analysis of the
information in the irregular subspace determining whether the power system data
has been compromised. Also Liu et al. [S033] views false data detection as matrix
separation problem and, differently from the case of the PCA, proposes algorithms
that exploit “the low rank structure of the anomaly-free measurement matrix, and
the fact that malicious attacks are quite sparse.”

Tiwari et al. [S097] propose an approach inspired by PCA, that uses an invariant
“ — an over-approximation of the reachable states — of the system under normal
conditions as the classifier”; this set is called the safety envelope. An alarm is
raised whenever the system state falls outside the safety envelope.

Security-oriented cyber-physical state estimation (SCPSE) for power grid, pro-
posed in Zonouz et al. [S026], uses stochastic information fusion algorithms on
“information provided by alerts from intrusion detection systems that monitor the
cyber infrastructure for malicious or abnormal activity, in conjunction with knowl-
edge about the communication network topology and the output of a traditional
state estimator”, in order to detect intrusions and malicious data, and to assess the
cyber-physical system state.

Other novel anomaly detection methods in power grid comprise a detector im-
plementing the Euclidean distance metric [S048], and a cosine similarity matching
based approach [S055]. It is worth noting that the second one requires the usage
of the Kalman filter as a source of estimated/expected data.

To contrast false data injection attacks, Sedghi and Jonckheere [S034] present
a decentralized detection and isolation scheme based on the Markov graph of the
bus phase angles, obtained via conditional mutual information threshold (CMIT)
test, while Sou et al. [S020] introduces a scheme, that considers potentially com-
promised information from both the active and the reactive power measurements
on transmission lines. In this second scheme, based on the novel reactive power
measurement residual, “the component of the proposed residual on any particular
line depends only locally on the component of the data attack on the same line”. Li
and Wang [S040] presents the state summation detection using state variables’ dis-
tributions, which tests hypothesis on true measurement square sum Sx (assumed
to follow normal distribution, given a large number of state variables) together
with test on J(x̂). Finally, Sanandaji et al. [S041] presents a heuristic for detecting
abrupt changes in the system outputs based on the singular value decomposition
of a history matrix built from system observations.

For dissipative or passive CPS, Eyisi and Koutsoukos [S098] propose energy-
based attack detection monitor.

To contrast stochastic cyber-attacks, Li et al. [S107] presents an algebraic de-
tection scheme based on the frequency-domain transformation technique and linear
algebra theory, together with sufficient and necessary conditions guaranteeing the
detectability of such attacks.

Pasqualetti et al. [S010] characterizes fundamental monitoring limitations of
descriptor systems from system-theoretic and graph-theoretic perspectives, and de-
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signs centralized and distributed monitors, which are complete, in the sense that
they detect and identify every (detectable and identifiable) attack.

Finally, Jones et al. [S113] presents an automated anomaly detection mecha-
nism based on inference via formal methods to develop an unsupervised learning
algorithm, which constructs from data a signal temporal logic (STL) formula that
describes normal system behavior. Trajectories that do not satisfy the learned
formula are flagged as anomalous.

As a general comment, the literature described in this section appears quite
fragmented, and a systematic high level view is still missing even within a specific
application domain. The different results and methodologies are very difficult to
relate each other and validate since both a comparison metric and a benchmark,
neither academic nor industrial, have not been agreed and defined yet.

Controller

Considering the used controller, the first fact emerging from our analysis is that
studies focusing on state estimation usually do not examine at all the controller.
In fact, in 82 (69.49% of 118 selected) studies the controller is not available. In the
remainder of this section we will focus on the remaining 36 studies, some of which
consider more than one controller at once.

As shown in Figure D.17, the most considered controllers are generic state feed-
back or output feedback controllers with a control law restricted to be linear time
invariant, found in 13 studies, together with linear quadratic regulators (LQR) and
H∞ (minimax) controllers, each of which is seen in 12 works. The variations of
proportional-integral-derivative (PID) controller are considered in 7 works, while
the event-triggered and self-triggered controllers can be found in 3 studies [S085,
S103, S111], and sliding mode controllers in 2 studies [S013, S115].

Figure D.17: Distribution of studies by controller

Interestingly, seven primary studies ([S024, S069, S073, S076, S077, S086, S093])
propose novel controllers. More specifically, inspired by the analogy to flocking be-
havior, Wei and Kundur [S024] developed distributed hierarchical “control method-
ologies that leverage cooperation between distributed energy resources and traditional
synchronous machines to maintain transient stability in the face of severe distur-
bances”. For a class of denial-of-service (DoS) attack models, Amin et al. [S069]
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presents an optimal minimax causal feedback control law, subject to the power,
safety and security constraints. Gupta et al. [S073] studies a similar problem of op-
timal minimax control in the presence of an intelligent jammer with limited actions
as dynamic zero-sum game between the jammer and the controller. Befekadu et
al. [S076] introduces instead the “measure transformation technique under which the
observation and state variables become mutually independent along the sample-path
(or path-estimation) of the DoS attack sequences in the system”, thanks to which
it derives the optimal control policy for the risk-sensitive control problem, under a
Markov modulated DoS attack model. Zhu and Martínez [S077] proposes a varia-
tion of the receding-horizon control law to deal with the replay attacks, while Zhu
et al. [S086] provides a set of coupled Riccati differential equations characterizing
feedback Nash equilibrium as the solution concept for the distributed control in the
multi-agent system environment subject to cyber attacks and malicious behaviors
of physical agents. Finally, Kwon and Hwang [S093] proposes “a hybrid robust con-
trol scheme that considers multiple sub-controllers, each matched to a specific type
of cyber attacks”, together with a method for designing the corresponding secure
switching logic.

As a general comment, the literature described in this section derives interesting
theoretical results, but there is still a lot of work to do for addressing the practical
challenges in CPS security.

Communication aspects and network-induced imperfections

The introduction of the communication network in a control loop modifies the
external signals of the plant and the controller due to the network-induced im-
perfections [97], which in turn depend on some communication aspects, such as
transmission scheduling and routing.

When analyzing the primary studies on the basis of this facet we got a surprise:
100 out of 118 studies (i.e., 84.75%) do not explicitly consider any communication
aspect or imperfection, while only 6 studies (i.e., 5.08%) address more than one
aspect. The total number of times each communication aspect was addressed within
the set of the primary studies is shown in Figure D.18.

Figure D.18: Distribution by communication aspects and network-induced imper-
fections
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Synchronization errors are considered only by Pajic et al. [S099], where also
variable latency and time-varying sampling are mapped into parameters of the
state estimation procedure that describe modeling errors. Time-varying sampling is
taken into account also by Yilmaz and Wang [S060] and, together with transmission
scheduling, by De Persis and Tesi [S103]. Limited bandwidth is considered together
with error control coding by Gupta et al. [153] (which is related to [S073]), and by
Sundaram et al. [S074], in which “nodes in a network transmit linear combinations
of incoming packets rather than simply routing them”. Packet losses and disorder
alone is taken into consideration in two works ([S091, S118]) and together with
variable latency and transmission scheduling in another one ([S087]). Routing by
itself is examined by Vuković et al. [S022], and together with error control coding,
transmission scheduling and variable latency, by D’Innocenzo et al. [S088]. Only
variable latency is considered by Miao and Zhu [S094] and by Jones et al. [S113].
Both error control coding and transmission scheduling by themselves are taken into
account in 3 works ([S079, S109, S110] and [S085, S095, S104], respectively).

Surprisingly, very few papers (attempt to) provide non-trivial mathematical
models of the communication protocol, which indeed is a fundamental actor of
almost any CPS. In particular, only in D’Innocenzo et al. [S088] a specific standard
for communication, i.e., WirelessHART and ISA-100, is explicitly considered in the
CPS mathematical model.

Attacks and their characteristics
Regardless of the adopted point of view (see Subsection D.4), every study on CPS
security deals with attacks in order to either implement or to counteract them.
Each attack threats one or more primary security attributes (see Subsection D.4).
More specifically, the best known attack on availability is the denial of service
(DoS) attack, that renders inaccessible some or all the components of a control
system by preventing transmissions of sensor or/and control data over the network.
“To launch a DoS an adversary can jam the communication channels, compromise
devices and prevent them from sending data, attack the routing protocols, flood with
network traffic some devices, etc.” [S069]. Attacks on data integrity are known
as deception attacks and represent the largest class of attacks on cyber-physical
systems, including false data injection attacks. The attacks on confidentiality alone
are often referred to as disclosure attacks, i.e., eavesdropping, which is discussed
only in two studies [S081, S084].

Figure D.19 shows the distribution of attacks within the set of our primary
studies. The false data injection, together with generic deception and DoS, with
57, 33 and 20 occurrences respectively, accounts for 74.8% of all considered attacks,
while the variable structure switching, the packet scheduling, and the bias injection
attacks are considered only once.

Characterization of the attacks. Generally speaking, an attack on control
systems can be characterized by the amount of available resources and knowledge
[S081]. The resources of an adversary can be split in disclosure resources, which
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Figure D.19: Distribution of attacks considered by primary studies

enable her to obtain sensitive information about the system during the attack by
violating data confidentiality, and disruption resources, that affect the system op-
eration by compromising the integrity and/or availability. The amount of a priori
knowledge regarding the control system is another core component of the adver-
sary model, as it may be used, for instance, to render the attack undetectable. In
the rest of Subsection D.4 we describe the characteristics of each type of attack
individually.

In the bias injection attack, considered only by Teixeira et al. [S081], the ad-
versary’s goal is to inject a constant bias in the system without being detected. No
disclosure capabilities are required for this attack, since the attack policy is open-
loop. The data corruptions may be added to both the actuator and sensor data, and
the amount of disruption resources should be above the threshold of undetectabil-
ity3. Furthermore, the open-loop attack policy requires an extensive knowledge of
the parameters of considered closed-loop system and anomaly detector.

In the coordinated variable structure switching attack and its extension to
multi-switch attack considered in the work of Liu et al. [S013], an opponent controls
multiple circuit breakers within a power system, and employs a local model of the
system and local state information (i.e., some knowledge of the target generator
states, which are rotor angle and frequency) to design a state-dependent breaker
switching sequence, that destabilizes target synchronous generators.

3In other words, the attacker should have enough resources to construct an unobservable at-
tack; a good example of the amount of disruption resources above the threshold of undetectability
in the context of power transmission networks is given by the security index [154], defined as min-
imum number of measurements an attacker needs to compromise, in order to attack measurement
k without being detected.
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The attack on the scheduling algorithm influences the temporal characteristics
of the network, as “it results in time-varying delays and data packets possibly re-
ceived out-of-order” [S087]. To remain stealthy, the attacker is not able to delay the
packets beyond a maximum allowable delay consistent with the network protocol
in place. On the system level, this attack does not require any a priori knowledge
of the system model, nor any disclosure resources.

The false data injection is a specific deception attack on state estimation, in-
troduced in the context of electric power grids by Liu et al. [S001]. This attack on
cyber-physical systems is the most studied one. To perform it, an adversary with
some knowledge of the system topological information manipulates sensor measure-
ments in order to change the state variables, while bypassing existing bad data de-
tection schemes. This attack is based on the open-loop policy and does not require
any disclosure resources. To construct the attack vectors, a common assumption
in most works on false data injection attacks on power system state estimation
is that the attacker has complete knowledge about the power grid topology and
transmission-line admittances. This information is abstracted in the Jacobian ma-
trix H [150, 155], known also as measurement or (power network) topology matrix.
By contrast, Teixeira et al. [S006] assumes the attacker only possesses a perturbed
model of the power system, “such a model may correspond to a partial model of the
true system, or even an out-dated model” [S006]. In this way it quantifies a trade-off
between the accuracy of the model known by adversary and possible attack impact
for different BDD schemes, showing that “the more accurate model the attacker has
access to, the larger deception attack he can perform undetected” [S006]. Similarly,
Rahman and Mohsenian-Rad [S027] argues that “a realistic false data injection at-
tack is essentially an attack with incomplete information due to the attackers lack
of real-time knowledge with respect to various grid parameters and attributes such
as the position of circuit breaker switches and transformer tap changers and also
because of the attacker’s limited physical access to most grid facilities”, and presents
a vulnerability measure for topologies of power grids subject to attacks based on
incomplete information. On the same line, Bi and Zhang [S017] derives a neces-
sary and sufficient condition to perform undetectable false data injection attack
with partial topological information and develops a min-cut method to design the
optimal attack, which requires the minimum knowledge of system topology.

Finally, the problem of constructing a blind false data injection attacks without
explicit prior knowledge of the power grid topology is studied by Esmalifalak et
al. [S012], Kim et al. [S051], and Yu and Chin [S052]. In Esmalifalak et al. [S012]
attackers try to make inferences through phasor observations applying linear in-
dependent component analysis (ICA) technique. However, such technique requires
that loads are statistically independent and non-Gaussian, and the technique need
full sensor observations [S051]. Kim et al. [S051] instead proposes subspace meth-
ods, which requires no system parameter information. In this case the attack can
be launched with only partial sensor observations. Yu and Chin [S052] proposes
to use principal component analysis (PCA) approximation method without the as-
sumption regarding the distribution of state variables, to perform the same task
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of making inferences from the correlations of the line measurements, in order to
construct the blind false data injection attack.

Differently from the works on undetectable false data injection attacks on power
grids summarized up to here, Qin et al. [S036] presents an unidentifiable version of
this attack, in which the control center can detect that there are bad or malicious
measurements, but it cannot identify which meters have been compromised.

A special type of false data injection attack on electric power grid is the load
redistribution attack, in which only load bus power injection and line power flow
measurements are attackable [S008]. It consists in increasing load at some buses and
reducing loads at other buses, while maintaining the total load unchanged, in order
to hide the attack from bad data detection. The construction of load redistribution
attack relies on topological information of the network, that can be derived from the
Jacobin matrix H. Considering the practical issue that an attacker can only obtain
the parameter information of a limited number of lines, Liu et al. [S043] presents
a strategy to determine optimal local attacking region, that requires the minimum
network parameter information. The undetectability is obtained by “making sure
that the variations of phase angles of all boundary buses connected to the same
island of the nonattacking region are the same” [S043].

The data framing attack is a deception attack on power system state es-
timation that exploits current bad data detection and removal mechanisms. It
purposely triggers the bad data detection mechanism and frames some normally
operating meters as sources of bad data such that their data will be removed. Af-
ter such data removal, although the remaining data appear to be consistent with
the system model, the resulting state estimate may have an arbitrarily large error
[S037]. Also this attack does not require any disclosure resources, since the attack
policy is open-loop. By applying the subspace methods presented in 2015 by Kim
et al. [S051] to learn the system operating subspace from measurements, the data
framing can be performed without knowledge of the Jacobian matrix H. A limited
a priori knowledge required consists of a basis matrix U of a subspace of all possible
noiseless measurements R of H.

The leverage point attack is a deception attack which creates leverage points
within the factor space of the (power system) state estimation regression model
[S049]. The residual of the measurement corresponded with the leverage point is
very small even when it is contaminated with a very large error. Thus the adversary
can freely introduce arbitrary errors into the meter measurements without being
detected. This attack is based on an open-loop policy and thus does not require
disclosure resources. However, to be fully effective, it requires a complete knowledge
of the Jacobian matrix H and amount of disruption resources above the threshold
of undetectability [S057].

The load altering attack against power grid’s demand response and demand
side management programs can bring down the grid or cause significant damage
to the power transmission and user equipment. It consists in an attempt to con-
trol and change (usually increase) certain load types in order to damage the grid
through circuit overflow or disturbing the balance between power supply and de-
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mand [S018]. The static load altering is mainly concerned in changing the volume
of the load. Here the attacker without any prior knowledge of the plant model uses
some historical data to impose a pre-programmed trajectory to the victim load (an
open-loop policy). In the more advanced dynamic load altering attack, presented in
2015 by Amini et al. [S050], the adversary “constantly monitors the grid conditions
through the attacker’s installed sensors so that it can adjust the attack trajectory
based on the current conditions in the power grid” [S050]. With this closed-loop
policy, the attacker having a complete knowledge of the plant’s model controls the
victim load based on a feedback from the power system frequency and can make
the power system unstable, without the need for increasing the scope or volume of
the attack, compared to a static scenario.

The attacks at physical layer range from attacks that affect both the physical
infrastructure and the control network (of power grids) [S053] to attacks through
physical layer interactions, such as an attack on vehicle platoon traveling at a
constant speed, presented by Dadras et al. [S115]. The attack studied by Soltan et
al. [S053] physically disconnects some power lines within the attacked zone (which
is defined as a set of buses, power lines, phasor measurement units (PMUs) and
an associated phasor data concentrator (PDC) [155]) and disallows the information
from the PMUs within the zone to reach the control center. This attack does not
require any knowledge of the plant model, nor disclosure resources. The attack
on vehicle platoons [S115] is carried out by a maliciously controlled vehicle, who
attempts to destabilize or take control of the platoon by combining changes to the
gains of the associated law with the appropriate vehicle movements. This closed-
loop attack “bears some resemblance to an insider version of the replay attack of
[S010], in that the attacker is part of the CPS and is therefore able inject control
inputs legitimately”.

In topology poisoning attack an adversary covertly alters data from certain
meters, network switches and line breakers to mislead the control center with an in-
correct network topology. Kim and Tong [S028] shows that under certain conditions
even in a local information regime, where the attacker has only local information
from those meters it has gained control, undetectable topology poisoning attacks
exist and can be implemented easily based on simple heuristics. Deka et al. [S039]
proves that grids completely protected by secure measurements are also vulnera-
ble to hidden topology poisoning attacks, if the adversary armed only with generic
information regarding the grid structure can corrupt the breaker statuses on trans-
mission lines and jam the communication of flow measurements on the attacked
lines.

The zero dynamics attack, first considered in [156, 157], is one in which an
adversary constructs an open-loop policy such that the attack signal produces no
output. In other words, “these attacks are decoupled from the plant output yk, thus
being stealthy with respect to arbitrary anomaly detectors” [S081]. For an attacker
with limited disruption resources, zero dynamics attacks are based on the perfect
(local) knowledge of the plant dynamics. In this setting, Teixeira et al. [S083] shows
that zero-dynamics attacks may not be completely stealthy since they require the
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system to be at a non-zero initial condition; however for the subset of attacks
exciting unstable zero-dynamics, the effect of initial condition mismatch in terms
of the resulting increase in the output energy can be made arbitrarily small while
still affecting the system performance. We should notice that an adversary capable
of changing all the measurements can, of course, force the system’s output to zero
without any knowledge of the model, initial state and nominal input. Furthermore,
for a linear not left-invertible system, the knowledge of the initial state is not
required, because an attacker can exploit the kernel of the transfer matrix and the
linearity of the system.

With the covert attack, also known as a covert misappropriation of the plant
[S078], an adversary can gain control of the plant in a manner that cannot be de-
tected by the controller. This attack requires high levels of system knowledge and
the ability of attacker to both read and replace communicated signals within the
control loop, indeed “the covert agent is assumed to have the resources to read and
add to both the control actuation commands and the output measurements. In prac-
tice, this could also be accomplished by augmenting the physical actuators or modify-
ing the sensors. Examples of such modifications include installing a controlled-flow
bypass around a sluice gate in an irrigation system and connecting a controlled
voltage source between a voltage measuring device and its intended connection point
in an electrical network. Another potential mode of attack would involve corrupt-
ing the PLCs used by the nominal controller to implement the control and sensing
operations” [S078]. Pasqualetti et al. [S010] observe that the covert attack can be
seen as a feedback version of the replay attack, while Smith [S078] examines also
the effects of lower levels of system knowledge and nonlinear plants on the ability
to detect a covert misappropriation of the plant.

The replay attack is a deception attack (possibly combined with a physical at-
tack), in which an adversary first gathers sequences of measurement and/or control
data, and then replays the recorded data while injecting an exogenous signal into
the system [S081]. The adversary requires no knowledge of the system model to
generate stealthy outputs. However, the attacker needs to have “enough knowledge
of the system model to design an input that may achieve its malicious objective,
such as physically damaging the plant” [S070]. The model of this attack is inspired
by the Stuxnet [158].

A generic deception attack is an attack on data integrity, where an adversary
sends false information from (one or more) sensors or/and controllers in order to
deceive a compromised system’s component into believing that a received false
data is valid or true [S071]. Usually it is modeled as an arbitrary additive signal
injected to override the original data. Since generic deception attacks can be used to
represent also other, more specialized deception attacks, they are considered mostly
in the studies adopting the defender’s point of view, presented in Subsection D.4.

There are 23 (19.49% of all) studies using a generic deception attack model
only to develop some defense strategy. The remaining 10 primary studies present
(generic) deception attacks, that are different from any other attack considered
above. Vrakopoulou et al. [S005] deals with a cyber-attack on the automatic gen-
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eration control (AGC) signal in multi-area power system as a controller synthesis
problem, where the objective is to drive the system outside the safety margins. It
investigates two cases according to whether the attacker has perfect model knowl-
edge or not, and provides different alternatives for attack synthesis, ranging from
“open loop approaches, based on Markov chain Monte Carlo (MCMC) optimization,
to close loop schemes based on feedback linearization and gain scheduling” [S005].

Always within power grids’ application domain, Vuković and Dán [S029] con-
sider a sophisticated adversary, that knows the system model and aims to disable
the state-of-the-art distributed state estimation by preventing it from converging.
To this end, he or she compromises the communication infrastructure of a single
control center in an interconnected power system, in order to manipulate the ex-
changed data (i.e., state variables) used as an input to the state estimator. The
stealthy cyber attacks that maximize the error in unmanned aerial systems’ state
estimation are studied in Kwon et al. [S082]. To consider the worst-case security
problem, this study assumes the attacker has the perfect knowledge on the system
model and can compromise sensors and/or actuators.

The attacks on both sensors and actuators by the adversary with a perfect
knowledge of the static parameters of a CPS (modeled as a discrete LTI system
equipped with a Kalman filter, LQG controller and χ2 failure detector) are consid-
ered also by Mo and Sinopoli [S071], where the adversary’s strategy is formulated
as a constrained control problem. Djouadi et al. [S100] instead present optimal sen-
sor signal attacks for the observer-based finite and infinite horizon linear quadratic
(LQ) control in terms of maximizing the corresponding cost functions. Also this
study assumes full-information, i.e., the system parameters are known to the ad-
versary.

Zhang et al. [S104] studies stealthy deception attacks on remote state estimation
with communication rate constraints. Here the deception attacker intrudes the sen-
sor, learns its online transmission strategy and then modifies the event-based sensor
transmission schedule, in order to degrade the estimation quality. For the domain
of electricity market, Jia et al. [S062] studies the average relative perturbation of
the real-time locational marginal price as an optimization problem; the adversary
is assumed to have not only the perfect knowledge of the system model, but also
the possibility to access the measurement values in real-time, in order to inject bad
data that is state independent, partially adaptive, or even fully adaptive.

A stealthy deception scheme capable of compromising the performance of the
automated cascade canal irrigation systems is presented by Amin et al. [S072]. This
attack scheme is based on approximate knowledge of canal hydrodynamics and is
implemented via switching the linearized shallow water partial differential equation
parameters and proportional boundary control actions, to withdraw water from the
pools through offtakes. Similarly, the stealthy deception attacks on process control
systems performed by a very powerful adversary with knowledge of the exact linear
model of the plant, the parameters of anomaly detector and control command
signals, are presented by Cárdenas et al. [S075]. In the most sophisticated attack
considered in this study, adversaries “try to shift the behavior of the system very
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discretely at the beginning of the attack and then maximize the damage after the
system has been moved to a more vulnerable state” [S075].

Finally, for a single-input single-output plant, Bai et al. [S101] analytically char-
acterizes an optimal stealthy attack strategy, that maximizes the estimation error of
the Kalman filter by tampering with the control input, as a function of the system
parameters, noise statistics and information available to the attacker.

From such literature a systematic characterization of “types” of attack is emerg-
ing, even if the “generic deception attack” and “false data injection attack” have
been primarily addressed.

Attack scheme
In this section we distinguish the selected studies based on whether they consider
centralized, distributed or local attack strategies. The distribution of studies based
on this facet is shown in Figure D.20.

Figure D.20: Distribution of studies by attack scheme

The overwhelming majority of primary studies (102, 86.44%) considers only
near omniscient adversary, capable of compromising several system components in
a centralized fashion, while there are only 6 (5.17%) studies that study distributed
attacks ([S010, S013, S014, S024, S025, S086]), and 13 (11.02%) studies dealing
with local attacks ([S005, S013, S019, S025, S028, S029, S043, S044, S074, S084,
S086, S104, S115]).

It is clear from this data that distributed and local solutions require more at-
tention.
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Plant model used by the attacker
This facet characterizes a modeling framework used by an adversary to design an
attack on a CPS. Since attacker’s knowledge of the control system and plant model
can be limited or absent, an adversary may rely on a model of plant that is different
from the actual model used by a system operator. Here our focus is on such cases,
Figure D.21 shows the distribution of the primary studies by plant model used by
an attacker.

Figure D.21: Distribution of primary studies by plant model used by an attacker

In 101 studies (85.59%) it is assumed that the attacker uses the same model of
the plant as the system operator, while in 14 studies (11.86%) the adversary does
not use any model of plant. In the remaining 3 studies (2.54%) the attacker uses
a model of plant that is simpler than the one used by operator. In particular, in
the works of Kim et al. [S037, S051] data framing attacks on power transmission
system are designed using a linearized system. It is shown that such attacks can
successfully perturb a nonlinear “state estimate, and the attacker is able to control
the degree of perturbation as desired” [S037]. This is an answer on the question on
“whether attacks constructed from a linear model is effective in a nonlinear system”
[S051]. Liang et al. [S044] studies both DC and AC attack models to construct the
false data injection in AC state estimation, showing that the DC attack is detectable
when the injected values are too large, while the AC attack model permits to “hide
the attack completely” [S044].

Defense scheme
Similarly to attack schemes, we differentiate the studies also based on whether the
proposed approach to defend a CPS focuses on the local or global scale of the
system. In case of the global scale, this dimension also specifies whether a defense
mechanism uses centralized or distributed coordination model.

We recall from Subsection D.4 that there are 28 primary studies adopting only an
adversary’s point of view and not concerned with countermeasures against attacks.
We say that for them the defense schemes are not available. The distribution of
remaining (90, i.e., 76.27% of all) primary studies by defense scheme is shown in
Figure D.22.

Most of the studies (74) on defense mechanisms uses only centralized scheme,
while the local scale is considered only in 4 works ( [159] and [160], related to
[S010] and [S013], respectively, together with [S020], where also the centralized
scheme is taken into account, and [S105]). Distributed approaches are examined in
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Figure D.22: Distribution of studies by defense scheme

13 works (alone in [S011, S014, S024, S029, S034, S084, S086, S100, S108, S110]
and together with centralized ones in [S010, S025, S060]). We must point out
that according to our selection strategy we do not consider the studies focused on
the typical distributed problem of reaching consensus in the presence of malicious
agents [156, 157]; this is because in these works the dynamics is part of the consensus
algorithm and can be specifically designed, rather than being given as in a physical
system [S058].

This data suggests that distributed and local defense solutions require more
attention.

Defense strategy

We have already anticipated in Subsection D.4 that countermeasures against at-
tacks, i.e., actions minimizing the risk of threats, are presented in more than three-
fourth of primary studies, and occupy the central spot of the research efforts. The
defense strategies can be classified as prevention, detection, and mitigation [161];
following the line of the fault diagnosis literature [106], we advocate isolation as a
further defense strategy extending detection approaches.

Prevention aims at decreasing the likelihood of attacks by reducing the vul-
nerability of the system [161]. It brings together all the actions performed offline,
before the system is perturbed or attacked. There are 43 studies (36.44%) studying
prevention mechanisms. These studies range from security metrics for the vul-
nerability analysis of systems or their critical components to design and analysis
of resilient state estimators and controllers capable to withstand some attacks,
and protection-based approaches aiming to identify and secure some strategic dis-
tributed components. Figure D.23 shows the distribution of the primary studies
focussing on prevention.
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Figure D.23: Distribution of primary studies by prevention approach

Twenty studies present protection-based approaches. Among them, 6 studies
discuss the secure sensor allocation against undetectable false data injection attacks
in power transmission networks. More specifically, Bobba et al. [S003] show that it
is necessary and sufficient to protect a set of basic measurements (in number equal
to number of all the unknown state variables in the state estimation problem) to
ensure that no such attack can be launched, while Giani et al. [S015] proof that
placing p + 1 secure phasor measurement units (PMUs) at carefully chosen buses
are sufficient to neutralize any collection of p sparse attacks, and Kim and Tong
[S028] present a so-called cover-up protection that identifies the set of meters that
need to be secured so an undetectable attack does not exist for any target topology.

Also Yang et al. [S016] identify the critical meters to protect and observes that
the meters measuring bus injection powers play a more important role than the ones
measuring the transmission line power flows, since they are essential in determining
a specific state variable, while the measurements of line power flows are redundant
to improve the accuracy of state estimation.

As finding the minimum number of protected sensors such that an adversary
cannot inject false data without being detected is NP-hard4 [S003], Kim and Poor
[S009] and Deka et al. [S038] present greedy algorithms to select a subset of mea-
surements to be protected.

To validate the correctness of customers’ energy usage by detecting anomaly ac-
tivities at the consumption level in the power distribution network, Lo and Ansari
[S032] present “a hybrid anomaly intrusion detection system framework, which in-
corporates power information and sensor placement along with grid-placed sensor
algorithms using graph theory to provide network observability.”

To reveal zero-dynamics attacks, Teixeira et al. [S083] provide necessary and suf-
ficient conditions on modifications of the CPS’s structure and presents an algorithm
to deploy additional measurements to this end, while Bopardikar and Speranzon
[S089] develop design strategies that can prevent or make stealth attacks difficult
to be carried out; the proposed modifications of the legacy control system include
optimal allocation of countermeasures and design of augmented system using a
Moore-Penrose pseudo-inverse.

Mohsenian-Rad and Leon-Garcia [S018] discuss the defense mechanisms against
static load altering attacks and presents a cost-efficient load protection design prob-

4since this problem is reducible to the hitting set problem
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lem minimizing the cost of protection while ensuring that the remaining unprotected
load cannot cause circuit overflow or any other major harm to the electric grid.

For electricity market domain, Esmalifalak et al. [S065] use a two-person zero-
sum game model to obtain an equilibrium solution in protecting different mea-
surements against false data injection attacks impacting locational marginal price
(LMP). Within the same domain, Ma et al. [S068] consider a multiact dynamic
game where the attacker can jam a reduced number of signal channels carrying
measurement information in order to manipulate the LMP creating an opportu-
nity for gaining profit, and the defender is able to guarantee a limited number of
channels in information delivery.

Other protection-based approaches include, for instance “intentionally switch
on/off one of the selected transmission lines by turns, and therefore change the sys-
tem topology” [S042]; dynamically change the set of measurements considered in
state estimation and the admittances of a set of lines in the topology in a controlled
fashion [S047], that is an application of a moving target defense (MTD) paradigm;
use covert topological information by keeping the exact reactance of a set of trans-
mission lines secret, possibly jointly with securing some meter measurements [S017];
use an algebric criterion to reconfigure and partition a Jacobian matrix H into two
sub-matrices, on each of which to perform a corresponding residual test [S021]; use
graph partition algorithms to decompose a power system into several subsystems,
where false data do not have enough space to hide behind normal measurement
errors [S030]; or even use voltage stability index [162] to identify nodes in power
distribution networks with similar levels of vulnerabilities to false data injection
attacks via a hybrid clustering algorithm [S056]; “employ a coding matrix to the
original sensor outputs to increase the estimation residues, such that the alarm will
be triggered by the detector even under intelligent data injection attacks” [S109],
under the assumption that the attacker does not know the coding matrix yet.

Finally, in order to detect and isolate the disconnected lines and recover the
phase angles, in front of the joint cyber and physical attack [S053] outlined in
Section D.4, Soltan et al. [S053] present an algorithm that partitions the power
grid into the minimum number of attack-resilient zones, ensuring the proposed
online methods are guaranteed to succeed.

Then, the four over five resilient controllers [S069, S073, S076, S077] and
nine over ten state estimators [S015, S049, S054, S091, S096, S099, S102, S111,
S116] presented in the primary studies were already described in the end of Sub-
sections D.4 and D.4, respectively.

The only works not discussed there are Bezzo et al. [S114] and Mishra et
al. [S110]. The first one builds an algorithm that leverages the theory of Markov
decision processes to determine the optimal policy to plan the motion of unmanned
vehicles and avoid unsafe regions of a state space despite the attacks on sensor
measurements, when “the system is fully observable and at least one measurement
(however unknown) returns a correct estimate of a state” [S114], while in the sec-
ond study the state estimation is performed in a private and secure manner across
multiple computing nodes (observers) with an approach inspired by techniques in
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cryptography, i.e., decoding Reed-Solomon codes, and results from estimation the-
ory, such as Cramer-Rao lower bound, as a guarantee on the secrecy of the plant’s
state against corrupting observers [S110].

Finally, Shoukry et al. [S087] present a minimax state estimator and con-
troller design as a defense against packet scheduling attacks.

There are 8 works presenting security metrics, such as security indices defined
in the context of power networks as a minimum number of meters to perform an
unobservable attack whether including [S004] or not [S002] a given meter, and ε-
stealthiness, which is a notion that quantifies the difficulty to detect an attack when
an arbitrary detection algorithm is implemented by the controller [S101].

A vulnerability measure for topologies of power grids subject to false data
injection attacks based on incomplete information is presented by Rahman and
Mohsenian-Rad [S027], while the vulnerability of the power system state estima-
tor to attacks performed against the communication infrastructure is analyzed by
Vuković et al. [S022] via security metrics that quantify the importance of individual
substations and the cost of attacking individual measurements in terms of number
of substations that have to be attacked. For the domain of electricity market,
Jia et al. [S062] introduces the average relative price perturbation as a measure of
a system-wide price perturbation resulting from a deception attack described in
Subsection D.4.

In the context of a canonical double-integrator-network (DIN) model of au-
tonomous vehicle networks, to reflect the quality of the adversary’s estimate of the
desired nonrandom statistics Xue et al. [S084] defines “the error covariance for a
minimum-variance-unbiased estimate of the initial-condition vector as the security
level matrix” and considers its scalar measures as security levels characterizing the
confidentiality of network’s state.

Finally, Kwon and Hwang [S090] consider the dynamic behavior cost and es-
timation error costs to analytically test the behavior of unmanned aerial systems
under various deception attacks and quantify their severity accordingly.

The distribution of primary studies between offline and online defense strategies
is shown in Figure D.24, while the distribution of studies by online defense strategy
is reported in Figure D.25.

Figure D.24: Distribution between defense strategies

The online approaches come into play after adversarial events happen [S080].
Detection is an online approach in which the system is continuously monitored
for anomalies caused by adversary actions [161], in order to decide whether an
attack has occurred. Attack isolation is one step beyond attack detection, since
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Figure D.25: Distribution by online defense strategy

it distinguishes between different types of attacks [106], and requires also that the
exact location(s) of the compromised components(s) be identified [S020]. Once an
anomaly or attack is detected (and isolated), mitigation actions may be taken to
disrupt and neutralize the attack, thus reducing its impact [161]. Among the 51
studies concerned with online defenses, 16 are focused on detection only, other 16
on detection and isolation, while 8 on detection, isolation and mitigation. There
are 9 works studying mitigation only, and two works on isolation and mitigation
[S036, S085].

To contrast unidentifiable false data injection, Qin et al. [S036] present an algo-
rithm to enumerate all feasible cases and proposes a mitigation strategy to minimize
the average damage to the system. Another work on isolation and mitigation
is Foroush and Martínez [S085], which introduces joint identification and control
strategy, that renders the system asymptotically stable in front of unknown periodic
DoS in form of pulse-width modulated jamming attacks.

Three of the works focused on mitigation were already described in previous
Subsections (i.e., [S079] in D.4, [S086] and [S093] in D.4). Here we spend some
words on the remaining 5 studies. Liu et al. [S013] recalls their study of strategies
to be “employed by a power system operator in the face of a switching attack to steer
the system to a stable equilibrium through persistent co-switching and by leveraging
the existence of a stable sliding mode” [160]. Zhu and Başar [S080] presents a cross-
layer, hybrid dynamic game-theoretic model that captures the coupling between the
cyber and the physical layers of the system dynamics, extending the control and
defense strategy designs “to incorporate post-event system states, where resilient
control and cyber strategies are developed to deal with uncertainties and events that
are not taken into account in pre-event robustness and security designs” [S080].

The overall optimal design of the cyber-physical system is characterized here by
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a Hamilton-Jacobi-Isaacs equation, together with a Shapley optimality criterion.
Yuan et al. [S118] uses this model to construct a hierarchical Stackelberg game,
in order to design a control strategy resilient to DoS launched by the intelligent
attacker, which adjusts its strategy according to the knowledge of the defender’s
security profile. Also Barreto et al. [S092] studies a game-theory problem (via
differential games and heuristic stability games) where the actions of the players
are the control signals each of them has access to. It focuses on reactive security
mechanisms, which change the control actions in response to attacks.

Another game-theoretic study is Liu et al. [S105], in which the objective of the
defender is to guarantee the dynamic performance of the networked control system
(NCS) by transmitting signals with higher power levels than that of jammer’s noisy
signals. The cost function of the proposed two-player zero-sum stochastic game
includes “not only the resource costs used to conduct cyber-layer defense or attack
actions, but also the dynamic performance (indexed by quadratic state errors) of
the NCS” [S105].

To contrast the DoS attacks characterized by their frequency and duration, De
Persis and Tesi [S103] determines suitable scheduling of the transmission times
achieving input-to-state stability (ISS) of the closed-loop system. It considers peri-
odic, event-based and self-triggering implementation of sampling logics, all of which
adapt the sampling rate to the occurrence of DoS and, sometimes, to the closed-loop
behavior.

Regarding detection mechanisms, most of all related works were already de-
scribed in Section D.4. Here we introduce the remaining ones.

In order to detect a zero dynamics attack, Keller et al. [S091] proposes to destroy
the stealthy strategy of the attacker by triggering data losses on the control signals
corrupted by the attack and to use the (augmented state version of) intermittent
unknown input Kalman filter. For a system equipped with multiple controller-
s/estimators/detectors, such that each combination of these components constitute
a subsystem, Miao and Zhu [094] presents a moving-horizon approach to solve a
zero-sum hybrid stochastic game and obtain a saddle-point equilibrium policy for
balancing the system’s security overhead and control cost, since each subsystem has
a probability to detect specific types of attacks with different control and detection
costs.

In the power systems domain, Hao et al. [S046] takes advantage of the sparse
and low rank properties of the block measurements for a time interval to make use
of robust PCA with element-wise constraints to improve both the error tolerance
and the capability of detecting false data with partial observations.

The detection and identification of false data injection attacks on power
transmission systems is considered by Davis et al. [S019], which outlines an “observe
and perturb methodology” to compare the expected results of a control action
with the observed response of the system, while Ozay et al. [S025] use a modified
version of normalized residual test coupled with proposed state vector estimation
methods against sparse attacks. Assuming the attack signal enters through the
electro-mechanical swing dynamics of the synchronous generators in the grid as an



D.5. RESULTS - VALIDATION STRATEGIES (RQ3) 185

unknown additive disturbance, Nudell et al. [S059] divide the grid into coherent
areas via “phasor-based model reduction algorithm by which a dynamic equivalent
of the clustered network can be identified in real-time”, and localizes which area
the attack may have entered using relevant information extracted from the phasor
measurement data.

D.5 Results - Validation strategies (RQ3)

We determined the research type and related research methods of each primary
study, simulation models, simulation test systems and experimental testbeds used,
repeatability and availability of replication package. In the following we describe
the main facts emerging from the collected data.

Research type and related research methods
Following the guidelines of systematic mapping studies, we reuse the classification
of research approaches proposed by Wieringa et al. [163], applying the research type
classification presented in Petersen et al. [7]. It is worth noting that our selection
strategy (see Section D.2) focuses on studies proposing a method or technique for
CPS security, so the philosophical papers, opinion papers and experience papers are
not considered in our study. The distribution of primary studies by research type
is presented in Figure D.26.

Figure D.26: Distribution of studies by research type

Validation research is applied in 87 studies (73.73%), where the techniques in-
vestigated are novel and have not yet been implemented in practice; the research
methods used are formal mathematical proofs, case studies and lab experiments,
together with simulations as a means for conducting an empirical study.

In particular, formal mathematical proofs are used in 63 studies (53.39%), in
5 of which as the only validation method adopted. There are 18 primary studies
providing both mathematical proofs and illustrative numerical examples, and 14
works illustrating formal mathematical proofs and examples applied to simulation
test systems.

Case studies via simulation, understood as empirical inquiries that draw on
multiple sources of evidence to investigate contemporary phenomena in their real-
life context, especially when the boundary between phenomenon and context cannot
be clearly specified [140], are employed in 4 studies, twice as validation of a good
line of argumentation [S026, S114], and twice as a follow up of formal mathematical
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reasoning [S082, S088]. It is worth noting that in Bezzo et al. [S114] also a hardware
evaluation on a remotely controlled flying quadricopter is performed, while the case
study of [S088] is extracted from its previous work cited therein [164].

Another validation research approach, considered in 46 primary studies, consists
of an experiment, that is a formal, rigorous and controlled empirical investigation,
where one factor or variable of the studied setting is manipulated, while all the
other parameters are regulated at fixed levels [140].

Most of these experiments are performed in simulation: in fact, the experimen-
tal testbeds are employed only in 7 of these 46 works. As shown in Figure D.27,
the quadruple-tank process [165], that is a multivariable laboratory process consist-
ing of four interconnected water tanks, is used in 3 primary studies [S081, S083,
S107]. LandShark5 robot, i.e., a fully electric unmanned ground vehicle developed
by Black I Robotics, is used in other 3 works [S097, S099, S106]. Finally, micro
grid experimental testbed consisting of three Siemens SENTRON PAC4200 smart
meters connected into the network with YanHua Industry control machine, which
is used to monitor all traffic of lab network and read the data from all meters, is
used only in one primary study [S054].

Figure D.27: Distribution of experimental testbeds

The remaining 39 works that use experiments as a validation method are em-
ploying different simulation test systems, described in Subsection D.5. Notably,
simulation experiments follow a good line of argumentation of the rest of the paper
in 21 primary studies, while in the remaining 18 works the experiments are coupled
with formal mathematical proofs.

Then, in 30 (i.e., 25.42% of all) studies solution proposals for specific problems
are given, where the potential benefits and the applicability of a solution is simply
shown through a small example or a line of argumentation; those solutions are
either novel or a significant extension of existing ones. We want to point out that
often this category corresponds to the results of theoretical research. There are 2
primary studies that use only a good line of argumentation [S014, S069], while sound
argument is followed by an illustrative numerical example in 6 primary studies
([S050, S092, S096, S100, S104, S109]), or by an example applied to simulation test
system in 22 works. The different simulation test systems found in our primary
studies are described in Subsection D.5.

5http://www.blackirobotics.com/LandShark_UGV_UC0M.html

http://www.blackirobotics.com/LandShark_UGV_UC0M.html
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Finally, evaluation research, where the techniques are implemented in practice
with identification of problems in industry, is done only in one study [S072], in
which the Gignac irrigation canal network is used to demonstrate the feasibility of
stealthy deception attacks on water SCADA systems.

Simulation model

As in the case of plant models used by attackers, also the plant models adopted for
simulation purposes can be different from the plant models used in the analysis. As
we can see from Figure D.28, an overwhelming majority of primary studies uses the
same model of plant for both the analysis and simulation, while only in 6 studies
(5.08%) these models are different [S028, S030, S051, S057, S062, S067]. Those six
studies are within the power transmission or electricity market application domains
and use nonlinear AC model for simulation, while consider a DC model (sometimes
together with AC model) for analysis purposes. It is worth to mention that in 32
primary studies there are no simulations. Those works account for those solution
proposals and validation research papers already described in Subsection D.5 that
use only good line of argumentation, formal mathematical proofs and illustrative
numerical examples as the research methods. The only exception is Tiwari et
al. [S097], which uses LandShark robot as the experimental testbed, without relying
on simulations.

Figure D.28: Distribution of primary studies by simulation model

Simulation test system

As it was anticipated in the previous section, 85 primary studies (72,03%) use
simulation test systems to validate the presented results. Within the power sys-
tems application domains, the simulation tool used in all but one primary study is
MatPower. The distribution of its test cases is shown in Figure D.5.

The works studying applications to electricity market use a modified 5-bus PJM
example (MatPower case5) [166], which is employed in 3 primary studies, and IEEE
14-bus (case14), IEEE 30-bus (case30), IEEE 118-bus (case118) test systems.

Generally speaking, IEEE 14-bus test system is the most used one, found in 38
works, treating mostly power transmission (in 34 studies), but also power generation
(in 2 studies) and electricity market (in 8 studies). IEEE 30-bus test system is
used in 17 primary studies, 16 of which are focused on power transmission only,
and the remaining one on electricity market. IEEE 118-bus test system is second
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Figure D.29: Distribution of power grid test cases

most adopted one, found in 29 primary studies, dealing power transmission (in 27
studies), power generation (in 2 studies), and electricity market (in 2 studies).

Studies on power distribution use 33-bus [167] and 69-bus [162] radial distri-
bution test systems in one primary study [S056], and IEEE 24-bus reliability test
system (MatPower case24_ieee_rts) in another one [S018]. We recall that IEEE
24-bus RTS is based on IEEE RTS-79 [168] and is used in 8 primary studies, all 8
focused on power transmission, 2 of which are dealing also with power generation.

39-bus New England test system (MatPower case39), obtained from Bills [169],
is used in 9 studies, 3 of which are about power generation and 8 are about power
transmission.

The remaining test systems are all about power transmission. IEEE 4-bus test
system (MatPower case4gs) is used in 2 studies; IEEE 9-bus (case9) is found in 9
studies; IEEE 57-bus (case57) is adopted by 11 and IEEE 300-bus (case300) by 13
studies, while MatPower cases representing the Polish 400, 220 and 110 kV networks
during either peak or off-peak conditions are used in 7 studies.

Power generation is also studied on two-area Kundur system test case [152],
which parameters can be found in the Matlab Power System Toolbox, in two studies
([S005, S059]); and on multi-area load frequency control schemes installed with
proportional-integral controllers, as described by Jiang et al. [170], in one study
[S118].

The other used test cases are summarized in Figure D.30. Irrigation system
consisting of a cascade of a number of canal pools, as presented in Amin et al. [171],
is used in two primary studies [S072, S078]. Also an unstable batch reactor system
presented by Walsh et al. [172], which is a fourth order unstable linear system with
two inputs, is employed in two works [S087, S094]. Tennessee Eastman process
control system model and associated multi-loop proportional-integral control law, as
proposed by Ricker [173], is adopted in three studies [S070, S075, S094]. PHANToM
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Premium 1.5A [174], that is a haptic device from SensAble Technologies, is used
once in a simulation setup [S105]. Finally, a rotorcraft in a cruise flight [175] is
simulated in two studies [S090, S093].

Figure D.30: Distribution of other used test cases

There are also 8 primary studies, which use ad hoc simulation test systems
to validate their results. Specifically, Kwon et al. [S082] use Monte Carlo simula-
tion with 1000 runs on an unmanned aerial system navigation system integrating
the inertial navigation system and the global positioning system implemented in
Matlab. D’Innocenzo et al. [S088] perform Matlab/Simulink simulations on the
multi-hop wireless network deployed in a room to connect the temperature sensor
to the variable-air-volume box, which is positioned nearby the room. Also Ey-
isi and Koutsoukos [S098] perform Matlab/Simulink simulations on a single-input
single-output (SISO) system; it deals with a velocity control of a single joint robotic
arm over a communication network. Bezzo et al. [S106] use robot operating sys-
tem6 (ROS) based simulator emulating electromechanical and dynamical behavior
of the real robot. In Park et al. [S108] simulations are carried out using a sim-
ple model of air traffic operations. Shoukry and Tabuada [S111] use an UGV
model implemented in Matlab. Jones et al. [S113] simulate a train, which uses an
electronically-controlled pneumatic braking system modeled as a classical hybrid
automaton. Finally, Shoukry et al. developed a “theory solver in Matlab and inter-
faced it with the pseudo-Boolean SAT solver SAT4J” [S117], where the simulations
are performed on linear dynamical systems with a variable number of sensors and
system states.

It is not surprising that most advanced and realistic validation methods have
been exploited in the power networks application domain. Despite research on CPS
Security in this domain appears quite mature, a benchmark is still missing.

Repeatability and availability of replication package

The possibility of reproducing the evaluation or validation results provided by the
authors is called repeatability, while the possibility of exploring changes to exper-
iment parameters is known as workability. The repeatability process is a good

6http://www.ros.org

http://www.ros.org
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scientific practice [176]. The so called Artifact Evaluation Process7 is used in a
number of conferences in computer science, and a similar concept of repeatability
evaluation of computational elements has been introduced in cyber-physical sys-
tems domain in 2014 ACM Hybrid Systems Computation and Control (HSCC)
conference8. However, such practice is rather new to several research communities
working on CPS: we found no primary study with a replication package. Thus, we
have isolated the information concerning the availability of a replication package
and extended the simple dimension provided in Yuan et al. [146] in a way that
repeatability is considered high when the authors provide enough details about

• the steps performed for evaluating or validating the study,

• the developed or used software,

• the used or simulated testbed, if any, and

• any other additional resource,

in a way that interested third parties can be able to repeat the evaluation or vali-
dation of the study. Otherwise, we have low repeatability.

Such high-level definition of repeatability values has ensured that the primary
studies using standard test systems from Subsection D.5 and well known experi-
mental testbeds have received high values of repeatability, where steps performed
in their experiments, case studies and/or simulation examples have been described
with enough details. On the other hand, the usage of some ad hoc simulation
test system has caused some low values of repeatability assigned. As shown in
Figure D.31, 82 studies (69.49%) have a high repeatability value, and 5 studies
(4.24%) have a low repeatability score. As a note, we did not have the possibility
to evaluate the repeatability of 31 studies (26.27%) since they do not present any
experiment, case study or simulation example.

Figure D.31: Distribution of primary studies by repeatability

Overall, we advocate the improving of repeatability and workability of compu-
tational results of the papers by adopting the best practices of repeatability process
and creating related replication packages, because we strongly believe in the use-
fulness of repeatability to empower others to build on top of the contributions of a
paper9 and thus accelerate scientific and technological progress.

7http://www.artifact-eval.org
8http://www.cs.ox.ac.uk/conferences/hscc2016/re.html
9http://evaluate.inf.usi.ch/artifacts/aea

http://www.artifact-eval.org
http://www.cs.ox.ac.uk/conferences/hscc2016/re.html
http://evaluate.inf.usi.ch/artifacts/aea
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D.6 Implications for future research

We discussed potential future research trends and challenges for CPS security
throughout this paper in the context of the various discussions of obtained results
(Sections D.3, D.4, and D.5); in the following we discuss more general observations
about implications for future research on CPS security.

CPS security is a relatively young research domain that is experiencing a strong
academic and industrial interest in the very few years, and both European
Commission and NSF are very oriented in financing research in this area. From the
data obtained in this systematic mapping study it can be inferred that the potential
of the developed results and methodologies in addressing realistic emerging prob-
lems in several application domains (first of all, power systems) is very promising.
As a consequence it is predictable that CPS security will be a “hot topic” for the
forthcoming years. Our investigation, based on the current state of the art, sheds
some light on challenges that will possibly represent the next steps of research in
CPS security.

From a modeling point of view this study shows that, as usual in the control
theory community, most of the research is based on the model-based paradigm.
However, as experience demonstrates, e.g., in the context of energy efficient con-
trol of building automation systems, in many CPS application domains the cost
of modeling is much larger than the improvement margin in terms of efficiency/-
cost/performance. As a consequence, we expect that part of future research will be
based on the data-based paradigm. This approach, based on “learning” techniques
and thus strictly connected with the computer science research community, together
with the recent large availability of (big!) data deriving from CPS infrastructures,
can also be of help towards a more realistic and systematic modeling/mapping of
attack/defense models/strategies/architectures.

From a validation point of view, selected papers, as illustrated in the previ-
ous sections, address a wide range of application domains, system architectures,
problem formulations and theoretical foundations: this makes it very difficult to
compare different solutions to similar problems, and we believe that time is mature
for the development of academic or industrial benchmarks, test-beds and demon-
strators. This could also help in disseminating how research on CPS security can
make the difference in each application domain.

From the point of view of the societal and industrial impact, it is easy to
infer from the selected papers that, even thought realistic applications are almost
always the main motivation for research, a strong synergy between real industri-
al/societal problems and theoretical investigation and results is still not apparent
from the scientific literature. It is also true that our research questions did not
include analysis of relevant projects related to CPS security, however most of the
selected papers do not directly relate to or derive from direct collaboration between
industry and academia: we hope and expect that this will happen in the near fu-
ture. Also, we were unable to find research devoted to formal certification with
reference to international standards, whose satisfaction is often the biggest barrier
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for testing and applying novel methods and technologies. Finally, we observe the
lack of workshops or symposia with the explicit target of catalysing collaboration
between industry and academia on specific applications.

D.7 Related work

Cyber-physical systems security within the smart grid domain has been reviewed
by Mo et al. [177] and by Sridhar et al. [178].

The work from Mo et al. [177] is a good starting point to face the area of CPS
security since it gives a broad overview on cyber and system-theoretic approaches to
security and shows how a combination of both of them together can provide better
security level than traditional methods. The provided example describes defense
against replay attack following secure control [179] method.

The article from Sridhar et al. [178] is more domain-specific. Since power system
is functionally divided into generation, transmission, and distribution, the survey
considers cyber vulnerabilities and security solutions for each of the underlying
fields. Notably, it deals with a wide range of (sophisticated) attacks, some bad
data detection techniques and mentions attack resilient control. This work pro-
vides also an overview on supporting infrastructure security, with a look on secure
communication, device security, security management and awareness, cyber security
evaluation, and intrusion tolerance. All in all, the paper identifies the importance of
combining both power application security and supporting infrastructure security
into the risk assessment process and provides a methodology for impact evaluation.
Conclusively, it lists a number of emerging research challenges in risk modeling and
mitigation, pointing out the importance of attack resilient control, domain-specific
anomaly detection and intrusion tolerance.

Both of previous surveys [177, 178] are focused on smart grid domain-specific
security. Moreover, based on the guidelines for performing systematic literature
reviews from Kitchenham and Charters [8], these studies cannot be considered as
a systematic literature reviews but as informal literature surveys.

The intrusion detection techniques for different CPS applications were surveyed
by Mitchell and Chen [180]. For each presented intrusion detection system (IDS)
design it was analyzed which, if any, distinguishing characteristics of CPS intrusion
detection were considered. The unique characteristics of cyber-physical intrusion
detection listed in this study are physical process monitoring, closed control loops,
attack sophistication and legacy technologies. The conclusion was that there is a
lack of IDS techniques that specifically consider most or all distinguishing aspects of
CPS. Other notable remark was that behavior-specification-based detection, which
formally define legitimate behavior and detects an intrusion when the system de-
parts from this model, has a potential to be the most effective one and deserves
more research attention. A similar inference was made by Zhu and Sastry [181]
in their survey of SCADA-specific IDS. Although the works on intrusion detection
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are relevant for our study, our goal is to give a much broader holistic view on
cyber-physical security, and not only on a particular family of mechanisms.

D.8 Conclusions and future work

The main goal of this survey was to analyze the publication trends, characteristics,
and validation strategies of existing methods and techniques for automatic control
for CPS security from a researcher’s point of view. In order to achieve this goal
we designed and conducted an empirical study that provides a detailed overview
of publication trends, venues, and research groups active on automatic control
for CPS security, and a thorough classification providing an empirically validated
foundation for evaluating existing solutions. The main contribution of this research
is to provide a systematic map of research on automatic control for CPS security;
the map has been carried out methodologically in order to warrant the quality of
the analysis and results. Additionally, another main contribution of our research
is the definition of a sound and complete comparison framework for both existing
and future research on automatic control for CPS security. These contributions will
benefit researchers proposing new approaches for CPS security, or willing to better
understand or refine existing ones.

We selected a total of 118 primary studies as a result of the systematic mapping
process, each of them belonging to different research areas, such as automatic con-
trol, networked systems, smart grid, security for information systems. The main
findings emerging from our study are summarized in Subsection D.1 and explained
in details in Sections D.3, D.4, and D.5. The resulting implications for the future
research are presented in Section D.6.

Based on the learning of this work, our future scientific research will be oriented
to address CPS security problems providing mathematical models of the interaction
between physical systems and non-idealities due to communication protocols, in
particular regarding wireless sensor and actuator networks.
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D.10 Additional details on our search strategy

As it was introduced in Subsection D.2, in order to achieve maximal coverage, our
search strategy consists of three complementary methods: an automatic search, a
manual search, and the snowballing.

Automatic search

It refers to the execution of a search query on a set of electronic databases and
indexing systems, in the literature it is the dominant method for identifying poten-
tially relevant papers [142]. The applied search string is the following:

(((("cyber physical" OR "cyber-physical" OR cyberphysical OR
"networked control") AND system*) OR CPS OR NCS) AND (attack* OR

secur* OR protect*))

In the spirit of Zhang, Ali Babar and Tell [143], we established a quasi-gold
standard (QGS) for creating a good search string for the automatic search. This
procedure requires a manual search in a small number of venues (see Table D.2)
and the results of these manual searches have been treated as a QGS by cross-
checking the results obtained from the automatic search. So, we iteratively defined
and refined the search string and conducted automatic searches on the electronic
data sources until the quasi-sensitivity was above the established threshold of 80%.
When the quasi-sensitivity became greater than 80%, the search performance was
considered acceptable and the results from the automated search have been merged
with the QGS. The details of the above mentioned process are provided in the
replication package of this study.

In this stage it was fundamental to select papers objectively so, following the
suggestions from Wohlin et al. [140], two researchers assessed a random sample of
the studies and the inter-researcher agreement has been measured using the Cohen
Kappa statistic [182]. Each disagreement has been discussed and resolved, with
the intervention of the team administrator, if necessary, until the Cohen Kappa
statistic reached a result above or equal to 0.80.

Our automatic search is performed on the largest and most complete scientific
databases and indexing systems available in computer science (see Table D.1). The
selection of these electronic databases and indexing systems is guided also by their
high accessibility and their ability to export search results to well-defined formats.
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Library Website
ACM Digital Library http://dl.acm.org
IEEE Explore http://ieeexplore.ieee.org
ISI Web of Science http://apps.webofknowledge.com
ScienceDirect http://www.sciencedirect.com
SpringerLink http://link.springer.com
Wiley InterScience http://onlinelibrary.wiley.com/+

Table D.1: Electronic data sources targeted with search strings

Among the results of the automatic searches we removed a set of false positives
in order to work on a polished set of potentially relevant studies (see Figure D.1).
Examples of false positives include proceedings of conferences or workshops, tables
of contents, maps, lists of program committee members, keynotes, tutorial or invited
talks, and messages from (co-)chairs. As shown in Figure D.1, our automatic search
resulted in 1559 potentially relevant studies.

Manual search

By following the quasi-gold standard procedure defined in [143], we

• identified a subset of important venues for the domain of cyber-physical sys-
tems security (they are shown in Table D.2), and

• performed a manual search of relevant publications in those venues.

By referring to Figure D.1, we manually searched and selected 289 potentially
relevant studies.

Venue Publisher
Int. Conf. on High Confidence Networked Systems (HiCoNS) ACM
Int. Journal of Critical Infrastructure Protection (IJCIP) Elsevier
Int. Symposium on Resilient Control Systems (ISRCS) IEEE

Table D.2: Selected venues for manual search

After merging all the studies and removing duplicates we obtained 1848 po-
tentially relevant studies. In order to further restrict the number of studies to
be considered during the snowballing activity, we applied the selection process de-
picted in Section D.2 to the current set of studies, thus obtaining 63 potentially
relevant studies. In order to handle studies selection in a cost effective way we used
the adaptive reading depth, as the full-text reading of clearly excluded approaches
is unnecessary. So, we considered title, keywords and abstract of each potentially
relevant study and, if selection decision could not be made, other information (like
conclusion or even full-text) have been exploited [143].

http://dl.acm.org
http://ieeexplore.ieee.org
http://apps.webofknowledge.com
http://www.sciencedirect.com
http://link.springer.com
http://onlinelibrary.wiley.com/+
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Snowballing

We applied the snowballing technique for identifying additional sources published
in other journals or venues [183], which may not have been considered during the
automatic and manual searches. So, as recommended in [184], we applied (back-
ward and forward) snowballing on the primary studies selected by the automatic
and manual searches. More specifically, we considered all the studies selected by
the automatic and manual searches and we automatically searched all the papers
referring them (i.e., forward snowballing [144]); then, we scrutinized also the ref-
erences of each selected study to identify important studies that might have been
missed during the initial search (i.e., backward snowballing [144]).

D.11 Additional results

This section of appendix provides the results of analysis of some additional charac-
teristics of our primary studies, which are not related to CPS security per se, but
are still useful to better understand this scientific area. In the following we first
describe the venues where the primary studies were published, then the involved
research institutions, and finally the theoretical foundations and time-scale models
found in these selected works.

Publication venues

In accordance with our selection strategy, we selected publications which have been
subject to peer review. Indeed, each primary study was published either as a
journal paper, conference paper, workshop paper, or book chapter. Figure D.32
shows the distribution of primary studies over their publication types. The most
common publication types are journal and conference, with 59 (50.01%) and 50
(42.37%) of the primary studies, respectively. Book chapter and workshop are the
least popular publication types, with only 6 (5.08%) and 3 (2.54%) studies falling
into their categories, respectively. Such a high number of journal and conference
papers on CPS security may indicate that CPS security is becoming more and more
a mature research theme, despite its relative young age.

Moreover, the very low number of workshop papers may be an indication of
two facts: on one side researchers on CPS security are valuing more other types of
publications (e.g., journal papers), given the high effort and skills required to con-
tribute in this research area; on the other side, it may be an indication that actually
the research community on CPS security still does not have a clearly defined iden-
tity, and a symptom of this situation may be the lack of a workshop or conference
fully dedicated to CPS security. We will detail more on this aspect when analyzing
the targeted publication venues (see Table D.3, where we recall that the HiCoNS
conference has been merged into the International Conference on Cyber-Physical
Systems (ICCPS) since 2015.).



D.11. ADDITIONAL RESULTS 205

Figure D.32: Distribution by type of publication

Publication venue Type #Studies
IEEE Trans. on Smart Grid Journal 19 (16.10%)
IEEE Conf. on Decision and Control (CDC) Conf. 11 (9.32%)
IEEE Trans. on Automatic Control Journal 9 (7.62%)
American Control Conf. (ACC) Conf. 6 (5.08%)
IEEE Journal on Selected Areas in Communications Journal 6 (5.08%)
IEEE Conf. on Smart Grid Communications (SmartGridComm) Conf. 6 (5.08%)
Int. Conf. on High Confidence Networked Systems (HiCoNS) Conf. 4(3.38%)
IEEE Control Systems Journal 3 (2.54%)
Global Communications Conf. (GLOBECOM) Conf. 3 (2.54%)
IEEE Trans. on Parallel and Distributed Systems Journal 3 (2.54%)
IEEE Trans. on Power Systems Journal 3 (2.54%)
Automatica Journal 2 (1.69%)
ACM Symposium on Inf., Comput. and Commun. Security (ASIACCS) Conf. 2 (1.69%)
Cyber Physical Systems Approach to Smart Electric Power Grid Book 2 (1.69%)
International Journal of Systems Science Journal 2 (1.69%)
TOTAL - 81 (68.64%)

Table D.3: Publication venues with more than one selected study

For what concerns the evolution of publication types of the years, Figure D.3
shows that there is a growing trend in the publications in journals and conference
proceedings, as 84 out of 118 studies are journal and conference papers published
between 2013 and 2015. Also, almost all book chapters have been published be-
tween 2013 and 2015 (5 out of 6 book chapters). Again, this may be a further
confirmation that CPS security is turning more and more into a mature field, with
more foundational and comprehensive studies published in the recent years.

By looking at the specific targeted publications venues we can notice that re-
search on CPS security is published across a number of venues spanning different
research areas, such as automatic control, networked systems, smart grid, security
for information systems. Indeed, the 118 selected papers of our study were pub-
lished at 53 different venues. Table D.3 shows the publication venues with more
than one selected study.

Those publication venues can be considered as the de facto leading venues for
publishing studies on cyber-physical systems security.
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From the collected data we can observe that most targeted venues are heteroge-
neous and pertain to different research areas, such as smart grid, automatic control,
communications, networked systems, parallel and distributed systems, etc.; this is a
clear indication of the very multidisciplinary nature of cyber-physical systems, even
in a specific sub-area like CPS security. Moreover, according to well-acknowledged
international rankings the most targeted venues for CPS security are all top-level
and very reputable in their research area. Indeed, all journals are ranked in the first
quartile according to the SCImago Journal Rank (SJR) indicator [185], and all con-
ferences are ranked either as A or B according to the computer science conference
rankings (CORE) [186] (depending on data availability); Finally, there is a whole
book in the set of most targeted venues and it is the sole publication venue specif-
ically targeted to research on CPS. The book has been published in 2015 and can
be a useful reading for current and future researchers in the area of CPS security,
with a special emphasis on power grids.

Theoretical foundation

Because of the intrinsic multidisciplinary nature of cyber-physical systems, we
payed attention also on the theoretical background on which primary studies are
built upon. Since the control systems are at the heart of CPS, it isn’t a surprise that
control theory is used in every study considered in our mapping study. The distri-
bution of other theoretical backgrounds considered by primary studies is presented
in Figure D.33.

Figure D.33: Distribution of theoretical backgrounds

The study of graphs is the most used theoretical foundation, found in 34 studies
(28.81%), that are [S002, S004, S009-S011, S014-S017, S020, S022-S024, S026-S030,
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S032, S034, S037-S039, S042, S045, S051, S053, S059, S062, S074, S084, S086, S088,
S100]. Graph theory is well suited to represent any kind of networks, and, in fact,
it was used in 26 studies on security of power transmission networks.

To asymptotically analyze the intrinsic difficulty of problems and algorithms and
to decide which of these are likely to be tractable, computational complexity theory
is employed in 11 works, all within the field of power transmission ([S001-S004,
S010, S015, S016, S032, S038, S039, S053]).

Information theory is used in 8 works ( [153], related to [S073], and [S018, S024,
S074, S079, S101, S110, S116]), most of which treating the security of generic linear
dynamical systems.

The methods of dimensionality reduction (such as principal component analy-
sis) and of latent variable separation (e.g. independent component analysis) from
machine learning and statistics provide a way to understand and visualize the
structure of complex data sets and are used in 7 works ([S012, S031, S033, S052,
S056, S097, S113]). Their application domain is power grids and generic dynamical
systems.

Other methods of linear dimensionality reduction are used for simultaneous sens-
ing and compression of finite-dimensional vectors. Providing means for recovering
sparse high-dimensional signals from highly incomplete measurements by using ef-
ficient algorithms, compressed sensing is applied in 7 works on power grids and
linear dynamical systems ([S004, S009, S025, S033, S046, S079, S111]).

Starting from 2014, typical formal methods concepts of signal temporal logic
(STL, which is a rigorous formalism for specifying desired behaviors of continuous
signals ) and satisfiability modulo theories (SMT) have found their way in 3 stud-
ies on CPS security ([S113] and [S047, S117], respectively), with applications to
anomaly detection and resilient state estimation in generic cyber-physical systems
and power grids.

The mathematical optimization is used in several studies and application ar-
eas. The sub-fields of optimization found in primary studies include convex opti-
mization (19 studies), linear programming (16 studies), dynamic programming and
integer programming (both appeared in 10 studies), nonlinear programming (6 stud-
ies), quadratic programming (adopted in 5 works) and semidefinite programming (3
studies).

The most used sub-field of game theory, found in 7 primary studies, is zero-sum
game, which do not allow for any cooperation between the players, since what one
player gains incurs a loss to the other player ([S065, S068, S073, S080, S087, S094,
S105]). Both non-zero sum games and Stackelberg games are formulated in 2 works
([S086, S092] and [187], related to [S077], together with [S118], respectively). As ex-
pected, all these games belong to a class of continuous-time infinite dynamic games,
also known as differential games, wherein the evolution of the state is described by
a differential equation and the players act throughout a time interval.
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Figure D.34: Distribution of primary studies by time-scale model

Time-scale model

The dynamic system behavior can be modeled via different time-scale models, such
as continuous, discrete and hybrid. In the case of the (quasi-)steady state assump-
tion, the system is treated as (quasi-)static, and the time-scale model is named
accordingly.

As shown in Figure D.34, the quasi-static model is used in 48 studies (40.68%),
all of them concerned with power systems state estimation, while there are 13
studies (11.02%) considering continuous time, 50 (42.37%) discrete time, and only
5 considering both continuous and discrete time ([S080, S083, S086, S103, S113],
only 3 of which actually using hybrid time [S080, S086, S113]). There is also one
work with both continuous time and quasi-static model ([S015]), and one with both
discrete time and quasi-static model ([S016]).

In particular, quasi-static analysis is mostly chosen for addressing control archi-
tectures like SCADA, which provide steady-state set-points to inner control loops.

D.12 Threats to validity

We assessed the level of quality of our study by applying the quality checklist
proposed by Petersen et al. in [7]. The goal of Petersen’s quality checklist is to
assess an objective quality rating for systematic mapping studies. According to
the metrics defined in Petersen’s quality checklist, we achieve an outstanding score
of 54%, defined as the ratio of the number of actions taken in comparison to the
total number of actions reported in the quality checklist. The quality score of our
study is far beyond the scores obtained by existing systematic mapping studies in
the literature, which have a distribution with a median of 33% and 48% as absolute
maximum value.

Overall, the high quality of our study has being ensured by producing a detailed
research protocol document in which all of its steps have been subject to three ex-



D.12. THREATS TO VALIDITY 209

ternal reviews by independent researchers (see Section D.2) and by conducting
our study by following the well-accepted and updated guidelines of systematic re-
view/mapping study [7, 8]. In the following we detail the main threats to validity
of our study and how we alleviated them.

Conclusion validity
Conclusion validity refers to the relationship between the extracted data, the pro-
duced map, and the resulting findings [140].

In order to mitigate possible conclusion validities, first of all we defined the
search terms systematically and we document procedures in our research protocol,
so that our research can be replicated by other researchers interested in the topic.
Moreover, we documented and used a rigorously defined data extraction form, so
that we could reduce possible biases that may happen during the data extraction
process; also, in so doing we had the guarantee that the data extraction process
has been consistent to our research questions.

On the same line, the classification scheme could have been another source
of threats to the conclusion validity of our study; indeed, other researchers may
identify classification schemes with different facets and attributes. In this context,
we mitigated this bias by

• performing an external evaluation by independent researchers who were not
involved in our research, and

• having the data extraction process conducted by the principle researcher and
validated by the secondary researcher.

Internal validity
Internal validity is concerned with the degree of control of our study design with
respect to potential extraneous variables influencing the study itself.

In this case, having a rigorously defined protocol with a rigorous data extrac-
tion form has surely helped in mitigating biases related to the internal validity of
our research. Also, for what concerns the data analysis validity, the threats have
been minimal since we employed well-assessed descriptive statistics when dealing
with quantitative data. When considering qualitative data, the sensitivity analysis
performed on all extracted data has helped in having good internal validity.

Construct validity
It concerns the validity of extracted data with respect to our research questions.
Construct validity concerns the selection of the primary studies with respect to how
they really represent the population in light of what is investigated.

Firstly, as described in Subsection D.2, the automatic search has been performed
on multiple electronic databases to get relevant studies independently of publishers’
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policies and business concerns. Moreover, we are reasonably confident about the
construction of the search string used in our automatic search since the used terms
have been identified by rigorously applying a systematic procedure (i.e., the quasi-
gold standard systematic procedure as defined in [143]). Moreover, the automatic
search is complemented by the snowballing activity performed during the search and
selection activity of our review process (see Figure D.1), thus making us reasonably
confident about our search strategy. Since our automated search strategy actually
relies on search engines quality and on how researchers write their abstracts, the
set of primary selected studies have been extended by means of the backward and
forward snowballing procedure.

After having collected all relevant studies from the automatic search, we rigor-
ously screened them according to well-documented inclusion and exclusion criteria
(see Subsection D.2); this selection stage has been performed by the principle re-
searcher, under the supervision of the secondary researcher. Also, in order to assess
the quality of the selection process, both principle and secondary researchers as-
sessed a random sample of studies, and inter-researcher agreement has been statisti-
cally measured with very good results (i.e., we obtained a Cohen-Kappa coefficient
of inter-rater agreement of more than 0.80).

External validity
It concerns the generizability of the produced map and of the discovered find-
ings [140].

In our research, the most severe threat related to external validity consists in
having a set of primary studies that is not representative of the whole research on
security for cyber-physical systems. In order to mitigate this possible threat, we em-
ployed a search strategy consisting of both automatic search and backward-forward
snowballing of selected studies. Using these two search strategies in combination
empowered us in mitigating this threat to validity. Also, having a set of well-defined
inclusion and exclusion criteria contributed to reinforcing the external validity of
our study.

A potential source of issues regarding the external validity of our study can
be the fact that only studies published in the English language have been selected
in our search. This decision may result in a possible threat to validity because
potentially important primary studies published in other languages may have not
been selected in our research. However, the English language is the most widely
used language for scientific papers, so this bias can be reasonably considered as
minimal.

Similarly, grey literature (e.g., white papers, not-peer-reviewed scientific publi-
cations, etc.) is not included in our research; this potential bias is intrinsic to our
study design, since we want to focus exclusively on the state of the art presented in
high-quality scientific papers, and thus undergoing a rigorous peer-reviewed publi-
cation process is a well-established requirement for this kind of scientific works.



Bibliography

[1] Y. Zacchia Lun, A. D’Innocenzo, and M. D. Di Benedetto, “On stability
of time-inhomogeneous Markov jump linear systems,” in Proceedings of the
55th Annual Conference on Decision and Control, CDC 2016, pp. 5527–5532,
IEEE, Dec. 2016.

[2] Y. Zacchia Lun, A. D’Innocenzo, and M. D. Di Benedetto, “Robust stability
of time-inhomogeneous Markov jump linear systems,” in Proceedings of the
20th World Congress of the International Federation of Automatic Control,
IFAC 2017, pp. 3473–3478, July 2017.

[3] Y. Zacchia Lun, A. D’Innocenzo, A. Abate, and M. D. Di Benedetto,
“Optimal robust control and a separation principle for polytopic time-
inhomogeneous Markov jump linear systems,” in Proceedings of the 56th An-
nual Conference on Decision and Control [accepted], CDC 2017, IEEE, Dec.
2017.

[4] Y. Zacchia Lun, A. D’Innocenzo, and M. D. Di Benedetto, “Robust LQR
for time-inhomogeneous Markov jump switched linear systems,” in Proceed-
ings of the 20th World Congress of the International Federation of Automatic
Control, IFAC 2017, pp. 2235–2240, July 2017.

[5] Y. Zacchia Lun, A. D’Innocenzo, I. Malavolta, and M. D. Di Benedetto,
“Cyber-physical systems security: a systematic mapping study,” arXiv
preprint arXiv:1605.09641, 2016.

[6] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli, “Modeling cyber–
physical systems,” Proceedings of the IEEE, vol. 100, pp. 13–28, Jan. 2012.

[7] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting
systematic mapping studies in software engineering: An update,” Information
and Software Technology, vol. 64, pp. 1–18, 2015.

[8] B. Kitchenham and S. Charters, “Guidelines for performing systematic lit-
erature reviews in software engineering,” Tech. Rep. EBSE-2007-01, Keele
University and University of Durham, 2007.

211



212 BIBLIOGRAPHY

[9] K.-D. Kim and P. R. Kumar, “Cyber–physical systems: A perspective at the
centennial,” Proceedings of the IEEE, vol. 100, pp. 1287–1308, May 2012.

[10] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foun-
dations of control and estimation over lossy networks,” Proceedings of the
IEEE, vol. 95, pp. 163–187, Jan. 2007.

[11] A. P. Gonçalves, A. R. Fioravanti, and J. C. Geromel, “Markov jump linear
systems and filtering through network transmitted measurements,” Signal
Process., vol. 90, no. 10, pp. 2842–2850, 2010.

[12] O. L. d. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time Markov
jump linear systems. Springer-Verlag London, 2005.

[13] L. Zhang, T. Yang, P. Shi, Y. Zhu, et al., “Analysis and design of Markov jump
systems with complex transition probabilities,” Studies in systems, decision
and control, vol. 54, 2016.

[14] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-
Physical Systems Approach. Berkeley, CA: Lee & Seshia, 2 ed., 2015.

[15] A. A. Cárdenas, S. Amin, and S. S. Sastry, “Research challenges for the
security of control systems,” in Proceedings of the 3rd Conference on Hot
Topics in Security, HOTSEC 2008, (Berkeley, CA), pp. 6:1–6:6, USENIX,
2008.

[16] R. Poovendran, “Cyber-physical systems: Close encounters between two par-
allel worlds [Point of View],” Proceedings of the IEEE, vol. 98, pp. 1363–1366,
Aug. 2010.

[17] N. Jazdi, “Cyber physical systems in the context of Industry 4.0,” in Proceed-
ings of the 2014 IEEE International Conference on Automation, Quality and
Testing, Robotics, pp. 1–4, May 2014.

[18] M. Hermann, T. Pentek, and B. Otto, “Design principles for Industrie 4.0
scenarios,” in Proceedings of the 49th Hawaii International Conference on
System Sciences, HICSS, pp. 3928–3937, IEEE, Jan 2016.

[19] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks:
Research challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, 2004.

[20] S. Han, X. Zhu, A. K. Mok, M. Nixon, T. Blevins, and D. Chen, “Control
over WirelessHART network,” in Proceedings of the 36th Annual Conference
of IEEE Industrial Electronics Society (IECON), pp. 2114–2119, 2010.

[21] M. Tabbara, D. Nesic, and A. R. Teel, “Stability of wireless and wireline net-
worked control systems,” IEEE Transactions on Automatic Control, vol. 52,
no. 9, pp. 1615–1630, 2007.



BIBLIOGRAPHY 213

[22] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in
networked control systems,” Proceedings of the IEEE, vol. 95, pp. 138–162,
Jan. 2007.

[23] V. Gupta, A. F. Dana, J. P. Hespanha, R. M. Murray, and B. Hassibi, “Data
transmission over networks for estimation and control,” IEEE Transactions
on Automatic Control, vol. 54, no. 8, pp. 1807–1819, 2009.

[24] W. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nesic, “Networked
control systems with communication constraints: Tradeoffs between trans-
mission intervals, delays and performance,” IEEE Transactions on Automatic
control, vol. 55, no. 8, pp. 1781–1796, 2010.

[25] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless con-
trol network: a new approach for control over networks,” IEEE Transactions
on Automatic Control, vol. 56, pp. 2305–2318, Oct. 2011.

[26] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss,
“Compositional modeling and analysis of multi-hop control networks,” IEEE
Transactions on Automatic Control, Special Issue on Wireless Sensor and
Actuator Networks, vol. 56, no. 10, pp. 2345–2357, 2011.

[27] W. M. H. Heemels and N. van De Wouw, “Stability and stabilization of
networked control systems,” in Networked Control Systems (A. Bemporad,
W. M. H. Heemels, and M. Johansson, eds.), vol. 406 of Lecture Notes in
Control and Information Sciences, ch. 7, pp. 203–253, Springer-Verlag Lon-
don, 2010.

[28] P. Sadeghi, R. A. Kennedy, P. B. Rapajic, and R. Shams, “Finite-state
Markov modeling of fading channels - a survey of principles and applications,”
IEEE Signal Processing Magazine, vol. 25, pp. 57–80, Sept. 2008.

[29] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability specifica-
tions for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349–370, 1999.

[30] P. J. Antsaklis, “A brief introduction to the theory and applications of hybrid
systems,” Proceedings of the IEEE, vol. 88, pp. 879–887, July 2000. Special
Issue on Hybrid Systems: Theory and Applications.

[31] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete abstrac-
tions of hybrid systems,” Proceedings of the IEEE, vol. 88, pp. 971–984, July
2000.

[32] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, C. Pinello, and A. L.
Sangiovanni-Vincentelli, “Automotive engine control and hybrid systems:
Challenges and opportunities,” Proceedings of the IEEE, vol. 88, pp. 888–
912, July 2000.



214 BIBLIOGRAPHY

[33] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic program-
ming for constrained optimal control of discrete-time linear hybrid systems,”
Automatica, vol. 41, no. 10, pp. 1709–1721, 2005.

[34] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,”
IEEE Control Systems, vol. 29, pp. 28–93, Apr. 2009.

[35] P. Bolzern, P. Colaneri, and G. De Nicolao, “Markov jump linear systems
with switching transition rates: mean square stability with dwell-time,” Au-
tomatica, vol. 46, no. 6, pp. 1081–1088, 2010.

[36] A. Abate, A. D’Innocenzo, and M. Di Benedetto, “Approximate abstrac-
tions of stochastic hybrid systems,” IEEE Transactions on Automatic Con-
trol, vol. 56, pp. 2688–2694, Nov. 2011.

[37] D. Liberzon, Switching in systems and control. Systems & Control: Founda-
tions & Applications, Birkhäuser Basel, 2003.

[38] P. Bolzern, P. Colaneri, and G. De Nicolao, “Almost sure stability of markov
jump linear systems with deterministic switching,” IEEE Transactions on
Automatic Control, vol. 58, no. 1, pp. 209–214, 2013.

[39] P. Bolzern, P. Colaneri, and G. De Nicolao, “Design of stabilizing strategies
for discrete-time dual switching linear systems,” Automatica, vol. 69, pp. 93–
100, 2016.

[40] A. Goldsmith, Wireless communications. Cambridge University Press, 2005.

[41] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Optimal power management in
wireless control systems,” IEEE Transactions on Automatic Control, vol. 59,
pp. 1495–1510, June 2014.

[42] H. S. Chang and E. K. Chong, “Solving controlled Markov set-chains with
discounting via multipolicy improvement,” IEEE Transactions on Automatic
Control, vol. 52, no. 3, pp. 564–569, 2007.

[43] D. J. Hartfiel, Markov Set-Chains, vol. 1695 of Lecture Notes in Mathematics.
Springer-Verlag Berlin Heidelberg, 1998.

[44] Y. Long and G.-H. Yang, “Fault detection for a class of nonhomogeneous
Markov jump systems based on delta operator approach,” Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 227, no. 1, pp. 129–141, 2013.

[45] Y. Yin, P. Shi, F. Liu, and K. L. Teo, “Filtering for discrete-time nonho-
mogeneous Markov jump systems with uncertainties,” Information Sciences,
vol. 259, pp. 118–127, 2014.



BIBLIOGRAPHY 215

[46] M. Karan, P. Shi, and C. Y. Kaya, “Transition probability bounds for the
stochastic stability robustness of continuous- and discrete-time Markovian
jump linear systems,” Automatica, vol. 42, no. 12, pp. 2159–2168, 2006.

[47] L. Zhang, E.-K. Boukas, and J. Lam, “Analysis and synthesis of Markov
jump linear systems with time-varying delays and partially known transi-
tion probabilities,” IEEE Transactions on Automatic Control, vol. 53, no. 10,
pp. 2458–2464, 2008.

[48] C. E. de Souza, “Robust stability and stabilization of uncertain discrete-time
Markovian jump linear systems,” IEEE Transactions on Automatic Control,
vol. 51, pp. 836–841, May 2006.

[49] O. L. d. V. Costa, J. B. R. do Val, and J. C. Geromel, “A convex programming
approach to H2 control of discrete-time Markovian jump linear systems,”
International Journal of Control, vol. 66, no. 4, pp. 557–580, 1997.

[50] O. L. d. V. Costa, E. O. Assumpção, E. K. Boukas, and R. P. Marques, “Con-
strained quadratic state feedback control of discrete-time Markovian jump
linear systems,” Automatica, vol. 35, no. 4, pp. 617–626, 1999.

[51] A. R. Fioravanti, A. P. Gonçalves, and J. C. Geromel, “Discrete-time H∞
output feedback for Markov jump systems with uncertain transition prob-
abilities,” International Journal of Robust and Nonlinear Control, vol. 23,
no. 8, pp. 894–902, 2013.

[52] A. P. Gonçalves, A. R. Fioravanti, and J. C. Geromel, “Filtering of discrete-
time Markov jump linear systems with uncertain transition probabilities,” In-
ternational Journal of Robust and Nonlinear Control, vol. 21, no. 6, pp. 613–
624, 2011.

[53] L. El Ghaoui and M. A. Rami, “Robust state-feedback stabilization of jump
linear systems via LMIs,” International Journal of Robust and Nonlinear Con-
trol, vol. 6, no. 9-10, pp. 1015–1022, 1996.

[54] O. L. d. V. Costa, M. D. Fragoso, and M. G. Todorov, Continuous-time
Markov jump linear systems. Probability and Its Applications, Springer-
Verlag Berlin Heidelberg, 2013.

[55] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequal-
ities in system and control theory, vol. 15 of Studies in Applied and Numerical
Mathematics. Society for Industrial and Applied Mathematics (SIAM), 1994.

[56] S. Jin and J. Park, “Robust H∞ filtering for polytopic uncertain systems via
convex optimisation,” IEE Proceedings - Control Theory and Applications,
vol. 148, no. 1, pp. 55–59, 2001.



216 BIBLIOGRAPHY

[57] X. Luan, P. Shi, and F. Liu, “Finite-time stabilisation for Markov jump sys-
tems with Gaussian transition probabilities,” IET Control Theory & Appli-
cations, vol. 7, pp. 298–304, Jan. 2013.

[58] X. Luan, S. Zhao, and F. Liu, “H∞ control for discrete-time Markov jump
systems with uncertain transition probabilities,” IEEE Transactions on Au-
tomatic Control, vol. 58, pp. 1566–1572, June 2013.

[59] X. Luan, S. Zhao, P. Shi, and F. Liu, “H∞ filtering for discrete-time Markov
jump systems with unknown transition probabilities,” International Journal
of Adaptive Control and Signal Processing, vol. 28, no. 2, pp. 138–148, 2014.

[60] M. Shen, S. Yan, Z. Tang, and Z. Gu, “Finite-time H∞ filtering of Markov
jump systems with incomplete transition probabilities: a probability ap-
proach,” IET Signal Processing, vol. 9, no. 7, pp. 572–578, 2015.

[61] X.-M. Sun, J. Zhao, and D. J. Hill, “Stability and l2-gain analysis for switched
delay systems: A delay-dependent method,” Automatica, vol. 42, no. 10,
pp. 1769–1774, 2006.

[62] S. Aberkane, “Stochastic stabilization of a class of nonhomogeneous Marko-
vian jump linear systems,” Systems & Control Letters, vol. 60, no. 3, pp. 156–
160, 2011.

[63] S. Chitraganti, S. Aberkane, and C. Aubrun, “Mean square stability of non-
homogeneous Markov jump linear systems using interval analysis,” in Pro-
ceedings of the 2013 European Control Conference, ECC 2013, pp. 3724–3729,
IEEE, 2013.

[64] C. C. Lutz and D. J. Stilwell, “Stability and disturbance attenuation for
Markov jump linear systems with time-varying transition probabilities,” IEEE
Transactions on Automatic Control, vol. 61, pp. 1413–1418, May 2016.

[65] Y. Yin, P. Shi, F. Liu, and K. L. Teo, “Observer-based H∞ control on nonho-
mogeneous Markov jump systems with nonlinear input,” International Jour-
nal of Robust and Nonlinear Control, vol. 24, no. 13, pp. 1903–1924, 2014.

[66] H. Zhang, R. Yang, H. Yan, and F. Yang, “H∞ consensus of event-based
multi-agent systems with switching topology,” Information Sciences, vol. 370-
371, pp. 623–635, 2016.

[67] Y. Zhang, Y. Yin, and F. Liu, “Constrained model predictive control for
Markov jump system with disturbances,” in Proceedings of the 34th Chinese
Control Conference, CCC 2015, pp. 1816–1821, IEEE, 2015.

[68] Y. Liu and F. Liu, “N-step off-line MPC design of nonhomogeneous Markov
jump systems: a suboptimal case,” Journal of the Franklin Institute, vol. 351,
no. 1, pp. 174–186, 2014.



BIBLIOGRAPHY 217

[69] Y. Liu, F. Liu, and K. L. Teo, “Output peak control of nonhomogeneous
Markov jump system with unit-energy disturbance,” Circuits, Systems, and
Signal Processing, vol. 33, no. 9, pp. 2793–2806, 2014.

[70] Y. Yin, P. Shi, F. Liu, and C. C. Lim, “Robust control for nonhomogeneous
Markov jump processes: an application to DC motor device,” Journal of the
Franklin Institute, vol. 351, no. 6, pp. 3322–3338, 2014.

[71] Y. Yin, X. Chen, and F. Liu, “Disturbance rejection control for Markov jump
systems with nonhomogeneous processes,” in Proceedings of the 27th IEEE
Chinese Control and Decision Conference, CCDC 2017, pp. 6575–6580, IEEE,
2015.

[72] Y. Yin, P. Shi, F. Liu, and K. L. Teo, “Observer-based H∞ control on non-
homogeneous discrete-time Markov jump systems,” Journal of Dynamic Sys-
tems, Measurement, and Control, vol. 135, no. 4, p. 041016, 2013.

[73] L. Chen, Y. Leng, H. Guo, P. Shi, and L. Zhang, “H∞ control of a class
of discrete-time Markov jump linear systems with piecewise-constant TPs
subject to average dwell time switching,” Journal of the Franklin Institute,
vol. 349, no. 6, pp. 1989–2003, 2012.

[74] Y. Ding, H. Liu, and J. Cheng, “H∞ filtering for a class of discrete-time sin-
gular Markovian jump systems with time-varying delays,” ISA transactions,
vol. 53, no. 4, pp. 1054–1060, 2014.

[75] Y. Yin, P. Shi, F. Liu, and K. L. Teo, “Robust L2 - L∞ filtering for a class
of dynamical systems with nonhomogeneous Markov jump process,” Interna-
tional Journal of Systems Science, vol. 46, no. 4, pp. 599–608, 2015.

[76] L. Zhang, “H∞ estimation for discrete-time piecewise homogeneous Markov
jump linear systems,” Automatica, vol. 45, no. 11, pp. 2570–2576, 2009.

[77] S. Zhao and F. Liu, “Bayesian estimation for jump Markov linear systems with
non-homogeneous transition probabilities,” Journal of the Franklin Institute,
vol. 350, no. 10, pp. 3029–3044, 2013.

[78] M. Hou and R. J. Patton, “An LMI approach to H−/H∞ fault detection
observers,” in Proceedings of the 1996 UKACC International Conference on
Control, vol. 1, pp. 305–310, The Institution of Engineering and Technology
(IET), 1996.

[79] X.-J. Li and G.-H. Yang, “Fault detection for linear stochastic systems with
sensor stuck faults,” Optimal Control Applications and Methods, vol. 33, no. 1,
pp. 61–80, 2012.



218 BIBLIOGRAPHY

[80] Y. Liu, Y. Yin, F. Liu, and K. L. Teo, “Constrained MPC design of nonlinear
Markov jump system with nonhomogeneous process,” Nonlinear Analysis:
Hybrid Systems, vol. 17, pp. 1–9, 2015.

[81] Y. Zhang, Y. Ou, Y. Zhou, X. Wu, and W. Sheng, “Observer-based `2–`∞
control for discrete-time nonhomogeneous Markov jump Lur’e systems with
sensor saturations,” Neurocomputing, vol. 162, pp. 141–149, 2015.

[82] R. Zhang, Y. Zhang, and V. Sreeram, “Asynchronous H∞ estimation for two-
dimensional nonhomogeneous Markovian jump systems with randomly occur-
ring nonlocal sensor nonlinearities,” Mathematical Problems in Engineering,
vol. 2015, p. 1, 2015.

[83] L. Wu, P. Shi, H. Gao, and C. Wang, “H∞ filtering for 2D Markovian jump
systems,” Automatica, vol. 44, no. 7, pp. 1849–1858, 2008.

[84] Y. Yin, P. Shi, F. Liu, and K. L. Teo, “Fuzzy model-based robust H∞ filter-
ing for a class of nonlinear nonhomogeneous Markov jump systems,” Signal
Processing, vol. 93, no. 9, pp. 2381–2391, 2013.

[85] Y. Yin, P. Shi, F. Liu, K. L. Teo, and C.-C. Lim, “Robust filtering for non-
linear nonhomogeneous Markov jump systems by fuzzy approximation ap-
proach,” IEEE Transactions on Cybernetics, vol. 45, no. 9, pp. 1706–1716,
2015.

[86] J. N. Tsitsiklis and V. D. Blondel, “The Lyapunov exponent and joint spectral
radius of pairs of matrices are hard - when not impossible - to compute and to
approximate,” Mathematics of Control Signals and Systems, vol. 10, pp. 31–
40, 1997.

[87] L. F. Bertuccelli and J. P. How, “Estimation of non-stationary Markov chain
transition models,” in Proceedings of the 47th Annual Conference on Decision
and Control, CDC 2008, pp. 55–60, IEEE, Dec. 2008.

[88] R. Jungers, The joint spectral radius: theory and applications, vol. 385 of
Lecture Notes in Control and Information Sciences. Springer-Verlag Berlin
Heidelberg, 2009.

[89] K. J. Åström and B. Wittenmark, Adaptive control. Dover Books on Electrical
Engineering, Dover Publications, 2nd ed., 2008.

[90] C. Komninakis and R. D. Wesel, “Joint iterative channel estimation and de-
coding in flat correlated Rayleigh fading,” IEEE Journal on Selected Areas
in Communications, vol. 19, no. 9, pp. 1706–1717, 2001.

[91] F. M. Callier and C. A. Desoer, Linear system theory. Springer Texts in
Electrical Engineering, Springer-Verlag New York, 1991.



BIBLIOGRAPHY 219

[92] D. Luenberger, Introduction to dynamic systems: theory, models, and appli-
cations. John Wiley & Sons, Inc., 1979.

[93] M. Vidyasagar, Nonlinear systems analysis, vol. 42 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), 2002.

[94] G. Vankeerberghen, J. Hendrickx, and R. M. Jungers, “JSR: A toolbox
to compute the joint spectral radius,” in Proceedings of the 17th Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC 2014,
pp. 151–156, ACM, 2014.

[95] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, vol. 29 of A Series of Books in the Mathematical
Sciences. W. H. Freeman and Company, 2002.

[96] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press,
2nd ed., 2012.

[97] W. S. Levine, ed., The Control Systems Handbook: Control System Advanced
Methods. Electrical Engineering Handbook, CRC press, 2010.

[98] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control, vol. 40.
Englewood Cliffs, NJ: Prentice Hall, 1996.

[99] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[100] G. Kallianpur, Stochastic filtering theory, vol. 13 of Stochastic Modelling and
Applied Probability. Springer-Verlag New York, 1 ed., 1980.

[101] M. Davis and R. B. Vinter, Stochastic modelling and control. Monographs on
Statistics and Applied Probability, Springer Netherlands, 1 ed., 1985.

[102] R. T. Rockafellar, Convex analysis. Princeton University Press, Princeton,
NJ, 1997.

[103] R. E. Kalman, “Contributions to the theory of optimal control,” Boletin de
la Sociedad Matematica Mexicana, vol. 5, pp. 102–119, 1960.

[104] D. P. Bertsekas, Dynamic programming and optimal control, vol. I & II.
Athena Scientific, Belmont, MA, 1995.

[105] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE Trans-
actions on Automatic Control, vol. 51, pp. 1249–1260, Aug. 2006.

[106] I. Hwang, S. Kim, Y. Kim, and C. Seah, “A survey of fault detection, isola-
tion, and reconfiguration methods,” IEEE Transactions on Control Systems
Technology, vol. 18, pp. 636–653, May 2010.



220 BIBLIOGRAPHY

[107] B. Beckert and R. Hähnle, “Reasoning and verification: State of the art and
current trends,” IEEE Intelligent Systems, vol. 29, pp. 20–29, January 2014.

[108] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time linear
systems,” IEEE Transactions on Automatic Control, vol. 51, pp. 1862–1877,
December 2006.

[109] S. Haesaert, A. Abate, and P. Van den Hof, “Correct-by-design output feed-
back of LTI systems,” in Proceedings of the 54th Annual Conference on De-
cision and Control, CDC 2015, pp. 6159–6164, IEEE, December 2015.

[110] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification and syn-
thesis for discrete-time stochastic systems,” IEEE Transactions on Automatic
Control, vol. 60, no. 8, pp. 2031–2045, 2015.

[111] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,”
Formal aspects of computing, vol. 6, no. 5, pp. 512–535, 1994.

[112] R. W. Hamming, “The unreasonable effectiveness of mathematics,” The
American Mathematical Monthly, vol. 87, no. 2, pp. 81–90, 1980.

[113] A. Gut, Probability: a graduate course, vol. 75 of Springer Texts in Statistics.
Springer-Verlag New York, 2012.

[114] G. Strang, Introduction to Linear Algebra. Wellesley, MA, USA: Wellesley-
Cambridge Press, 5th ed., 2016.

[115] R. L. Burden and J. D. Faires, Numerical Analysis. Cengage Learning, 9th ed.,
2010.

[116] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Society for Indus-
trial and Applied Mathematics (SIAM), 2000.

[117] R. E. Megginson, An Introduction to Banach Space Theory, vol. 183 of Grad-
uate Texts in Mathematics. Springer-Verlag New York, 1998.

[118] C. S. Kubrusly, Elements of operator theory. Birkhäuser Boston, 2nd ed.,
2001.

[119] J. W. Brewer, “Kronecker products and matrix calculus in system theory,”
IEEE Transactions on circuits and systems, vol. 25, no. 9, pp. 772–781, 1978.

[120] H. Neudecker, “Some theorems on matrix differentiation with special ref-
erence to Kronecker matrix products,” Journal of the American Statistical
Association, vol. 64, no. 327, pp. 953–963, 1969.

[121] P. D. Lax, Functional analysis. Pure and applied mathematics, Wiley-
Interscience, 2002.



BIBLIOGRAPHY 221

[122] G. Sobczyk, New Foundations in Mathematics: The Geometric Concept of
Number. Birkhäuser Basel, 2013.

[123] E. De Klerk, Aspects of semidefinite programming: interior point algorithms
and selected applications, vol. 65 of Applied Optimization. Springer Science
& Business Media Dordrecht, 2002.

[124] A. W. Naylor and G. R. Sell, Linear operator theory in engineering and sci-
ence, vol. 40 of Applied Mathematical Sciences. Springer-Verlag New York,
2000.

[125] B. Grünbaum, Convex polytopes, vol. 221 of Graduate Texts in Mathematics.
Springer New York, 2nd ed., 2003.

[126] G. Rota and W. G. Strang, “A note on the joint spectral radius,” Indagationes
Mathematicae (Proceedings), vol. 63, pp. 379–381, 1960.

[127] N. E. Barabanov, “On the Lyapunov exponents of discrete inclusions,” Au-
tomation and Remote Control, vol. 49, no. 2, 3, 5, pp. 40–46, 24–29, 17–24,
1988. In Russian.

[128] N. E. Barabanov, “Lyapunov exponent and joint spectral radius: some known
and new results,” in Proceedings of the 44th Annual Conference on Decision
and Control and European Control Conference, CDC-ECC 2005, pp. 2332–
2337, IEEE, Dec. 2005.

[129] A. Cicone, “A note on the joint spectral radius,” ArXiv e-prints, Feb. 2015.
arXiv:1502.01506.

[130] M. A. Berger and Y. Wang, “Bounded semigroups of matrices,” Linear Alge-
bra and its Applications, vol. 166, pp. 21–27, 1992.

[131] A. Stevenson, Oxford Dictionary of English. Oxford University Press, 3rd ed.,
2010.

[132] O. Kallenberg, Foundations of modern probability. Probability and Its Appli-
cations, Springer-Verlag New York, 2nd ed., 2002.

[133] T. Björk, Arbitrage Theory in Continuous Time. Oxford Finance Series,
Oxford University Press, 3rd ed., 2009.

[134] J. R. Norris, Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics, Cambridge University Press, 1998.

[135] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming, vol. 594 of Wiley series in probability and statistics. Wiley-
Interscience, 2005.



222 BIBLIOGRAPHY

[136] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping
studies in software engineering,” in Proceedings of the 12th International Con-
ference on Evaluation and Assessment in Software Engineering, EASE 2008,
(Swinton, UK), British Computer Society, 2008.

[137] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on techni-
cal debt and its management,” Journal of Systems and Software, vol. 101,
pp. 193–220, 2015.

[138] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed, “A systematic mapping
study of search-based software engineering for software product lines,” Infor-
mation and Software Technology, vol. 61, pp. 33–51, 2015.

[139] I. Malavolta and H. Muccini, “A study on MDE approaches for engineering
wireless sensor networks,” in Proceedings of the 40th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, SEAA 2014, (New
York, NY), pp. 149–157, IEEE, 2014.

[140] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering. Computer Science, Berlin,
Germany: Springer, 2012.

[141] O. P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within the
software engineering domain,” Journal of Systems and Software, vol. 80, no. 4,
pp. 571–583, 2007.

[142] L. Chen, M. Ali Babar, and H. Zhang, “Towards an evidence-based under-
standing of electronic data sources,” in Proceedings of the 14th International
Conference on Evaluation and Assessment in Software Engineering, EASE
2010, (Swinton, UK), pp. 135–138, British Computer Society, 2010.

[143] H. Zhang, M. Ali Babar, and P. Tell, “Identifying relevant studies in software
engineering,” Information and Software Technology, vol. 53, no. 6, pp. 625–
637, 2011.

[144] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, EASE
2014, (New York, NY), pp. 38:1–38:10, ACM, 2014.

[145] N. B. Ali and K. Petersen, “Evaluating strategies for study selection in
systematic literature studies,” in Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement,
ESEM 2014, (New York, NY), pp. 45:1–45:4, ACM, 2014.



BIBLIOGRAPHY 223

[146] E. Yuan, N. Esfahani, and S. Malek, “A systematic survey of self-protecting
software systems,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 8, pp. 17:1–17:41, Jan. 2014.

[147] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, pp. 11–33, Jan. 2004.

[148] M. Yampolskiy, P. Horvath, X. Koutsoukos, Y. Xue, and J. Sztipanovits,
“Taxonomy for description of cross-domain attacks on CPS,” in Proceedings
of the 2nd ACM International Conference on High Confidence Networked
Systems, HiCoNS 2013, (New York, NY), pp. 135–142, ACM, 2013.

[149] I. Lee and O. Sokolsky, “Medical cyber physical systems,” in Proceedings
of the 47th Design Automation Conference, DAC 2010, (New York, NY),
pp. 743–748, ACM, 2010.

[150] A. Abur and A. G. Exposito, Power system state estimation: theory and
implementation. Boca Raton, FL: CRC Press, 2004.

[151] A. Wood and B. Wollenberg, Power generation, operation and control. Hobo-
ken, NJ: Wiley, 2nd ed., 1996.

[152] P. Kundur, Power system stability and control. New York, NY: McGraw-Hill
Education, Jan. 1994.

[153] A. Gupta, C. Langbort, and T. Başar, “One-stage control over an adversarial
channel with finite codelength,” in Proceedings of the 50th Annual Conference
on Decision and Control and European Control Conference, CDC-ECC 2011,
(New York, NY), pp. 4072–4077, IEEE, Dec. 2011.

[154] H. Sandberg, A. Teixeira, and K. H. Johansson, “On security indices for state
estimators in power networks,” in Proceedings of the 1st Workshop on Secure
Control Systems, CPS Week 2010, (Stockholm, Sweden), pp. 63–68, KTH,
April 2010.

[155] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State es-
timation in electric power grids: Meeting new challenges presented by the
requirements of the future grid,” IEEE Signal Processing Magazine, vol. 29,
pp. 33–43, Sept. 2012.

[156] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via
linear iterative strategies in the presence of malicious agents,” IEEE Trans-
actions on Automatic Control, vol. 56, pp. 1495–1508, July 2011.

[157] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in unreliable
networks: A system theoretic approach,” IEEE Transactions on Automatic
Control, vol. 57, pp. 90–104, Jan. 2012.



224 BIBLIOGRAPHY

[158] T. M. Chen and S. Abu-Nimeh, “Lessons from Stuxnet,” Computer, vol. 44,
pp. 91–93, April 2011.

[159] F. Pasqualetti, F. Dörfler, and F. Bullo, “Cyber-physical security via geomet-
ric control: Distributed monitoring and malicious attacks,” in Proceedings of
the 51st Annual Conference on Decision and Control, CDC 2012, (New York,
NY), pp. 3418–3425, IEEE, Dec. 2012.

[160] S. Liu, D. Kundur, T. Zourntos, and K. Butler-Purry, “Coordinated variable
structure switching in smart power systems: Attacks and mitigation,” in Pro-
ceedings of the 1st International Conference on High Confidence Networked
Systems, HiCoNS 2012, (New York, NY), pp. 21–30, ACM, 2012.

[161] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, “Secure control
systems: A quantitative risk management approach,” IEEE Control Systems,
vol. 35, pp. 24–45, Feb. 2015.

[162] M. Chakravorty and D. Das, “Voltage stability analysis of radial distribu-
tion networks,” International Journal of Electrical Power & Energy Systems,
vol. 23, no. 2, pp. 129–135, 2001.

[163] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineer-
ing paper classification and evaluation criteria: a proposal and a discussion,”
Requirements Engineering, vol. 11, no. 1, pp. 102–107, 2006.

[164] A. D’Innocenzo, M. D. Di Benedetto, and E. Serra, “Fault tolerant control
of multi-hop control networks,” IEEE Transactions on Automatic Control,
vol. 58, pp. 1377–1389, June 2013.

[165] K. H. Johansson, “The quadruple-tank process: a multivariable laboratory
process with an adjustable zero,” IEEE Transactions on Control Systems
Technology, vol. 8, pp. 456–465, May 2000.

[166] F. Li and R. Bo, “Small test systems for power system economic studies,” in
Proceedings of the 2010 IEEE Power and Energy Society General Meeting,
PES GM 2010, (New York, NY), pp. 1–4, IEEE, July 2010.

[167] B. Venkatesh, R. Ranjan, and H. B. Gooi, “Optimal reconfiguration of radial
distribution systems to maximize loadability,” IEEE Transactions on Power
Systems, vol. 19, pp. 260–266, Feb. 2004.

[168] C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, et al., “The IEEE Re-
liability Test System - 1996,” IEEE Transactions on Power Systems, vol. 14,
pp. 1010–1020, Aug. 1999.

[169] G. W. Bills, “On-line stability analysis study,” Tech. Rep. RP-90, Edison
Electric Institute, L.A., CA, Oct. 1970.



BIBLIOGRAPHY 225

[170] L. Jiang, W. Yao, Q. Wu, J. Y. Wen, and S. J. Cheng, “Delay-dependent
stability for load frequency control with constant and time-varying delays,”
IEEE Transactions on Power Systems, vol. 27, pp. 932–941, May 2012.

[171] S. Amin, X. Litrico, S. S. Sastry, and A. M. Bayen, “Cyber security of wa-
ter SCADA systems – part II: Attack detection using enhanced hydrody-
namic models,” IEEE Transactions on Control Systems Technology, vol. 21,
pp. 1679–1693, Sept. 2013.

[172] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked
control systems,” IEEE Transactions on Control Systems Technology, vol. 10,
pp. 438–446, May 2002.

[173] N. L. Ricker, “Model predictive control of a continuous, nonlinear, two-phase
reactor,” Journal of Process Control, vol. 3, no. 2, pp. 109–123, 1993.

[174] B. Taati, A. M. Tahmasebi, and K. Hashtrudi-Zaad, “Experimental identifi-
cation and analysis of the dynamics of a PHANToM Premium 1.5A Haptic
Device,” Presence: Teleoperators and Virtual Environments, vol. 17, no. 4,
pp. 327–343, 2008.

[175] K. S. Narendra and S. Tripathi, “Identification and optimization of aircraft
dynamics,” Journal of Aircraft, vol. 10, no. 4, pp. 193–199, 1973.

[176] P. Bonnet, S. Manegold, M. Bjørling, W. Cao, J. Gonzalez, et al., “Repeata-
bility and workability evaluation of sigmod 2011,” ACM SIGMOD Record,
vol. 40, no. 2, pp. 45–48, 2011.

[177] Y. Mo, T. H.-H. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Si-
nopoli, “Cyber-physical security of a smart grid infrastructure,” Proceedings
of the IEEE, vol. 100, pp. 195–209, Jan. 2012.

[178] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber-physical system security
for the electric power grid,” Proceedings of the IEEE, vol. 100, pp. 210–224,
Jan. 2012.

[179] A. A. Cárdenas, S. Amin, and S. S. Sastry, “Secure control: Towards surviv-
able cyber-physical systems,” in Proceedings of the 28th International Con-
ference on Distributed Computing Systems, ICDCS 2008, (New York, NY),
pp. 495–500, IEEE, June 2008.

[180] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques for
cyber-physical systems,” ACM Computing Surveys, vol. 46, no. 4, pp. 55:1–
55:29, 2014.

[181] B. Zhu and S. S. Sastry, “SCADA-specific intrusion detection/prevention sys-
tems: A survey and taxonomy,” in Proceedings of the 1st Workshop on Secure
Control Systems, CPS Week 2010, (Stockholm, Sweden), pp. 77–92, KTH,
April 2010.



226 BIBLIOGRAPHY

[182] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled
disagreement or partial credit.,” Psychological bulletin, vol. 70, no. 4, p. 213,
1968.

[183] T. Greenhalgh and R. Peacock, “Effectiveness and efficiency of search meth-
ods in systematic reviews of complex evidence: audit of primary sources,”
BMJ, vol. 331, no. 7524, pp. 1064–1065, 2005.

[184] S. Jalali and C. Wohlin, “Systematic literature studies: database searches
vs. backward snowballing,” in Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement, ESEM 2012,
(New York, NY), pp. 29–38, ACM, 2012.

[185] B. González-Pereira, V. P. Guerrero-Bote, and F. Moya-Anegón, “A new
approach to the metric of journals’ scientific prestige: The SJR indicator,”
Journal of Informetrics, vol. 4, no. 3, pp. 379–391, 2010.

[186] CORE, “Rankings portal,” 2015.

[187] M. Zhu and S. Martínez, “Stackelberg-game analysis of correlated attacks in
cyber-physical systems,” in Proceedings of the 2011 American Control Con-
ference (ACC), (New York, NY), pp. 4063–4068, IEEE, June 2011.



Index

`1-norm, 117
λ-system, see Dynkin system 126
H− index, 10
π-system, 126
σ-algebra, 126

Borel, 127, 128
filtration, 127, 131
product σ-algebra, 128

σ-field, see σ-algebra 126
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cyber-physical systems, 2
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dynamic programming
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equilibrium point, 28
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time-inhomogeneous, 133

Markov decision process, 5, 133
Markov jump linear system, 4
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stochastic stability, 30
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