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1. INTRODUCTION

Wireless control networks (WCN) are distributed control
systems where the communication between sensors, actu-
ators, and computational units is supported by a wireless
communication network. The use of WCN in industrial au-
tomation results in flexible architectures and generally re-
duces installation, debugging, diagnostic and maintenance
costs with respect to wired networks (see e.g. Akyildiz and
Kasimoglu (2004) and references therein). However mod-
eling, analysis and design of (wireless) networked control
systems (NCSs) are challenging open research problems
since they require to take into account the joint dynamics
of physical systems, communication protocols and network
infrastructures. Recently, a huge effort has been made in
scientific research on NCSs, see e.g. Hespanha et al. (2007),
Schenato et al. (2007), Gupta et al. (2009), Donkers et al.
(2011), Pajic et al. (2011), Alur et al. (2011), D’Innocenzo
et al. (2013) and references therein for a general overview.
In this domain it has been shown (e.g. in Schenato et al.
(2007), Gongalves et al. (2010), Smarra et al. (2015), Di
Girolamo et al. (2015)) that discrete-time Markov-jump
linear systems (MJLS, Costa et al. (2005)) represent a
promising mathematical model to jointly take into account
the dynamics of a physical plant and non-idealities of
wireless communication such as packet losses. A MJLS is,
basically, a switching linear system where the switching
signal is a Markov chain. The transition probability matrix
(TPM) of the Markov chain can be used to model the
stochastic process that rules packet losses due to wireless
communication. However, in most real cases, such proba-
bilities cannot be computed exactly and are time-varying.
We can take into account this aspect by assuming that the
Markov chain of a MJLS is polytopic time-inhomogeneous
(PTT), i.e. a Markov chain having its TPM varying over
time, with variations that are arbitrary within a polytopic
set of stochastic matrices. Given such mathematical model,
the first problem to be addressed is the (mean square)
stability problem. Some recent work addressed the above
problem: in Aberkane (2011) a sufficient condition for
stochastic stability in terms of linear matrix inequality
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feasibility problem is provided, while in Chitraganti et al.
(2013) a sufficient condition for mean square stability
(MSS) of system with interval TPM, which in turn can
be represented as a convex polytope (see Hartfiel (1998)
for additional details), is presented in relation to spectral
radius; in general, only sufficient stability conditions have
been derived for MJLS with PTI Markov chains having
TPM arbitrarily varying within a polytopic set of stochas-
tic matrices. In Zacchia Lun et al. (2016) we provide
necessary and sufficient conditions for MSS of discrete-
time MJLS with time-inhomogeneous Markov chains.

In this paper we extend such results deriving necessary
and sufficient conditions for robust mean square stability
of a discrete-time time-inhomogeneous MJLSs affected not
only by polytopic uncertainties on transition probabilities
but also by bounded disturbances. Such conditions require
to decide whether the joint spectral radius (JSR) of a finite
family of matrices is smaller than 1.

2. NOTATION AND CONCEPTUAL
PRELIMINARIES

The notation used throughout is standard. The sets of all
positive and nonnegative integers are represented by N and
Ny, respectively. The set of first k£ nonnegative integers is
denoted by Ny, i.e. Ny 2 {i € Ng;i <k}, VkeNg. If X is
a normed linear space (an inner product space), then the
symbols ||-|| and (-; -) stand for norm and inner product in
X, respectively. If X and Y are normed linear spaces, then
B[X,Y] denotes the normed linear space of all bounded
linear transformations of X into Y. For simplicity we set
B[X]£B[X, X]. Let F denote either the real field R or the
complex field C, and F" the n-dimensional (either real or
complex) Euclidean space. A transformation in B[F", F™|
will be identified with its m X n matrix representation
relative to the standard orthonormal bases for F™* and F™.
The conjugate of a complex matrix is denoted by overbar

=, while the superscript * indicates the conjugate transpose

of a matrix, and 7 indicates the transpose. Clearly for a
set of real matrices, * and 7 have the same meaning. We
indicate with C*"™ the set of Hermitian matrices, and with
F1*™ the set of positive semi-definite matrices. The nxn
identity matrix is denoted by I,,. For arbitrary row vectors
x € F™, y,z € F", the transformation (zy*) € B[F",F™],
such that (zy*)z = z(y*2) = x(z;y) = x>y 2ii, V2,
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is identified with the usual outer product m x n matrix
[:ig;], i=1,...,m, j=1,...,n. Unless otherwise stated,
|-l will indicate any norm in F", and, VM € B[F",F™],
[|M|| will denote the induced uniform norm in B[F", F™].
We will use of the trace operator tr(-): B[F"] —TF, defined
on elements m;; of M € F"*" as tr[M] = ZZ 1 M.
The trace operator has a commutative property, that is
tr(KL) = tr(LK). The linear space made up of all N
sequences M=(Mj, ..., My), with M; € B[F",F™], ie N,
is indicated by H™™, where N'2{1,..., N} is a finite set.
For simplicity, we set H"™ £ H™". For any M € H™™,
we define the following equivalent norms in the finite
dimensional space H™™: || M||max = max{||M;|;i € N},

N N *
1My £ 355 1M, and [[Ml2 £ /3050, tr(M7M;).

We shall omit the subscripts 1, 2, max whenever the
definition of a specific norm does not affect the result
being considered. It is easy to verify that H™™ equipped
with any of the above norms is a Banach space and, in
fact, (|||l2, H™™) is a Hilbert space (Costa et al., 2005, p.
16), with the inner product given, for M,V € H™™ by
<M;V>:Z L tr(M;FV;). For M e H™™ we write M* =
(M, ..., MN) E]HIm " and say that M € H" is Hermitian
if M =M*. We denote H™ & {M cH"; M; = M},ic N},
H"+ 2 {M e H™; M; > 0,i € N'}. We write, VM, Ve H",
that M >V when M-V =(M;-Vy,..., MN—Vy)€H" T,
and that M > V., if M; —V; > 0, Vi € N. We use the
vectorization transformation (Neudecker (1969)), defined
VM € B[F",F™] as ¢(M) = vec(M), where, indicating with
(M)s; the j-th column of M € F™*" we have that

M @(My)

vec(M)2| : |eC™, ¢[M]= : echNmn (1)
M,, e(My)

Remark 1. The spaces H™™ and CN™" are uniformly

homeomorphic (Naylor and Sell, 2000, p. 117) through the
linear mapping ¢ (Costa et al., 2005, p. 17).

Finally, E[] stands for the mathematical expectation of
the underlying scalar valued random variables.

3. JOINT SPECTRAL RADIUS

The results of this paper use the notion of joint spectral
radius (JSR, Rota and Strang (1960)), which in the last
decades has been subject of intense research due to its role
in the study of wavelets, switching systems, approximation
algorithms, and many other topics (Jungers (2009)).

Let M be a family of square matrices, i.e. M={M;}icr,
where M; e F"*" L2 {1,....L}. For each k € N, consider
the set I (M) of all possible products of length k& whose
factors are elements of M, that is

(M) = {(HflM;;)*{ L,... Iy € .c}

Definition 2. (Joint spectral radius, JSR). For any matrix

norm ||-|| on F™*™ consider the supremum among the
normalized norms of all products in II; (M), i.e.
pr(M) £ sup %, k€N
IIell, (M)

The joint spectral radius of M is defined as
p(M) = lim pr(M)
k—o0
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The JSR of a bounded set of matrices has some interesting
properties reported below.

Proposition 3. (Convex hull). The convex hull of a set has
the same joint spectral radius as the original set, i.e.

plconv M) = H(M)
Proof. See Barabanov (1988, 2005), Cicone (2015). O

Proposition 4. (Convergence of matrix products). For any
bounded set of matrices M and for any k € N, all matrix
products II € TI; (M) converge to zero matrix as k — oo,
if and only if p(M) < 1.

Proof. See (Berger and Wang, 1992, Theorem I (b)). O

Remark 5. The concept of JSR was introduced for a
bounded subset of any normed algebra. In fact, Rota
and Strang (1960) presented JSR also in a special case
of a subalgebra of the algebra of bounded operators on
a Banach space, providing an alternative construction of
the norms. Combining this consideration with the one
from Remark 1, we can state that any bounded subset
Z of operators in B[H™™] can be represented in B[CN™"]
through the linear mapping $[Z], with

p(2) = p(¢l2])

4. PROBABILITY SPACE WITH POLYTOPIC
TRANSITION MATRIX

In order to define the mathematical model we consider
in this paper, i.e. the discrete-time time-inhomogeneous
MJLS with polytopic uncertainties in the TPM, we need
some preliminary technical definitions: let us consider a
probability space (2, F, Pr), where 2 is the sample space,
F is the o-algebra of events and Pr is the probability
measure. Let 6 : NgxQ — A be a Markov chain defined
on the probability space, which takes values in a finite set
N. For keNy we define the transition probability as

pij (k)= )=i}=0, Z Pii(k

The associated TPM P(k) is a stochastic N x N matrix
with entries p;;(k). In this work we assume that P(k) is
unknown and time-varying within a bounded set.

Assumption 6. TPM P(k) is polytopic, i.e. Vk € Ny
L L
P =Y >0, Ak =1 @

where {P,}c. £ Pyr is a given set of TPMs, which are the
vertices of a convex polytope, \;(k) are unmeasurable.

Pr{0(k+1)=7 | 0(k

N(k) P, (k)

Remark 7. The Assumption 6 is not restrictive, since the
polytopic uncertainty model is widely used for robust
control of time-homogeneous MJLS (see e.g. Gongalves
et al. (2011)) and is considered to be more general than
the partly known element model of TPM uncertainties;
furthermore, also the interval TPM can be represented as
a convex polytope (Hartfiel (1998)).

We set O™ =Ly (2, F, Pr,C™) the Hilbert space of all C™-

valued F-measurable random variables with inner product
(z;y) =E[2z"y], and norm [|-||2. We set £o(C™) =&, C™,

the direct sum of countably infinite copies of C'™, Wthh
is a Hilbert space made up of 3={3(k); k€No}, 3(k)e C™,
st (13013 = Xren, Ellls(%)[1%] < 0o. For 5,u € £(C™), the
inner product is (5u) £ 3, e, El3* (k)u(k)] < [[3]l2]|ul.
We define C"™C ly(C™) as follows: 3={3(k); keNo} eC™ if
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3€l2(C™) and 3(k) € Lo (82, Fi, Pr,C™) Vk € Ny, where Fj,
is a o-algebra generated by ¢ € N, events. Clearly, Vk € Ny,
Fi, C fk+1 C F.

We have that C™ is a closed linear subspace of £5(C™) and
therefore a Hilbert space (Costa et al., 2005, p.21).

We define C}* as formed by elements 3, = {3(k); k € Ny},
s.t. 3(1) € Lo (Q, Fi, Pr,C™), Vi€ Ny. Finally, O is the set
of all Fy-measurable variables taking values in N.

5. STABILITY OF AUTONOMOUS DISCRETE-TIME
PTI MJLS WITH BOUNDED NOISE

Let us consider an autonomous discrete-time polytopic
time-inhomogeneous MJLS (&) described by

z(k+1) = Agyz(k) + Goryw(k), 3)

I(O) = Xy, 9(0) = 80,
where k €Ny is a time step, z(k) € F™ is the state vector,
and w(k) €F" is an additive disturbance representing the
process noise. The set A/ comprises the operational modes
of the system (S) and, for each possible value of 6(k) =1,
1€ N, we denote each matrix associated with the i-th mode
by e.g. Ai = Ag(r)—i- Thus, A= (A4;,...,Ay) € H" and
G=(G1...,Gy) €eH"™ are vectors of state and process
noise matrices, respectively, each of which is associated
with an operational mode of the system. Finally, 2:(0) €C}
and 6(0) €Oy are initial conditions.
It is easy to see that the system state evolves as

k—1 * k=1 [ k=1 *
k)_<HA;(i)>z(O)+Z 1145 | Goyw(@). (4)
1=0

i=0 \j=i+1
For a set © € F, we define the indicator function 1g in the
usual way, that is, Vw €,

1 ifweo®
16 = ’
o) {0 otherwise.
Notice that, Vi € N,

1{9(k)_i}( w) = 1if §(k)(w) =4, and 0 otherwise.
Z _ Ez
Elz Z Elz (k)™ (k)1{g(k)=i}]-

Followmg the standard Workﬂow for MJLSs (Costa et al.,
2005, p. 31), we use the subsequent notation:

E)1go(k)=i}],

i (k) £ Elz(k)1px)—= €F, (5)

a(k)2[q1 (), v (k)] €FN™,
ri(k) £ Elw(k)1on)—i}) €F, (6)

(k)2 [r1(k), - ey (k)] €FNT,
Qi(k) £ E[x(k)z* (k) 1o =i € BF"]T, (7)
Q(k)2(Q1(k),...,Qn(k))eH"T, (8)
Wl(k)éE[w(k)w*(k)l{e(k) i} € B[F"] (9)

W (k)2 (Wi(k),..., Wn(k))€eH"T,

GW (k)G*=(GiW1(k)GT,...,GN Wi (k)Gy) eH"Y,

X;(k) 2 E[z(k)w *(k)1{o(k)=iy) € B[F", F"], (10)

X (k)& (X (K), ..., Xy (k) eH™™,
AX(k)G* 2 (A1 X (k)G ..., AnXN (k)G eHM T (11)
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This permits us to define the expected value of z(k) as

u(k) 2El(h)]=Y"" gk eF™,

and the second moment of z(k) as

Q(k)2E[x Z Qi(k (12)

We can easﬂy see that the recursive equations for g¢;(k)
and Q; (k) in the polytopic time-inhomogeneous case with
bounded disturbance have the same structure as the time-
homogeneous case with known probability matrix (Costa
et al., 2005, p. 32), and the extension to this more general
case is done in the following manner.

Proposition 8. Consider the system (S). Vk€Ny, jeN
N
CIj(k"‘l):Zi:l pij(k)Aiqi(k +Z pw k)Giri(k),

Qj<k+1>=Zji1pij<k>AiQi<k>A +

with Rel-] indicating the real part of a complex matrix.

Proof. Regarding the first statement, from (5), (3) and
(6), by linearity of the expected value, we have that

qa‘(kﬂ)—zl, k)+Giw(k)) Liog=iy Loh+1=5]

_Z pz] A Qz Z pzj G Tz( )

The second statement can be proven similarly, from (7),
(3), (9), (10) and (11). O
To rewrite the recursive equations for Q;(k) in matrix
form, let us first focus for simplicity on (S) in the noise-
less case and consider a useful result regards the inequal-
ity between the ||q(k)| and ||Q(k)||1 (Costa et al., 2005,
p- 35, within the proof of Proposition 3.6).

)eB[F"] .

Proposition 9. Consider the noiseless version of system
(S), i.e. with w(k) = 0,Vk € Ng. Then
la(®)[* < nllQ(k)[1, Yk € No. (13)

We denote by ® a Kronecker product defined in the usual
way (Brewer (1978)). For any X,Y, Z, M given matrices of
appropriate size, the following properties are satisfied:

(X4Y)R(Z+M)=XRZ+Y®Z+X@M+Y @M (14a)

P(XYZ)=(Z"@X)p(Y) (14b)
As for time-homogeneous noiseless case (Costa et al., 2005,
pp- 33-35), also here, via application of (7), Proposition 8
(where the second and third summations in the expression
of Q;(k+1) are equal to zero, see Zacchia Lun et al. (2016)
for additional details), (1) and (14) to (8), we have that

P(Qk+1)) = A(k)2(Q(K)), (15)
(PT(k) ® Hn2)diag[fii ® Ai], A(k) E]FNanNn2
0

Ay @A : 0
0 Ay @ Ay - - 0

A(k) 2

)

[I>

diag[A;® Aj]
0 0
Consequently, from (15) we have that

@(Q(k))=< A*(Z'))@(Q(O)):/\@(Q(O))- (16)

- Ay ® An

k-1
=0
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Proposition 10. The matrix A(k) associated to the second
moment of x(k) is polytopic, i.e. Yk €Ny, Vie L

AR =T M)A M) 20,3

A2 (PT @ 1,)diaglA; ® A), P € Py (17)
Proof. Direct application of (2) and (14a) to (17). O
Let Az, be the set {A;}icr of all vertices of the polytope
associated to the second moment of z(k).

Remark 11. Recalling the definition of the convex hull
(Griinbaum, 2003, p. 14), we can write that Vk € N,
A(k)€convAy,.
We can now consider (S) with noise and, still applying
(7), Proposition 8, (1) and (14) to (8), rewrite the recursive
equations for @;(k) in the following matrix form:
¢(Q(k+1)) = Ak)H(Q(K))+
I'(k)p

(W (k ))+2Re[5(k)A(X(k))]v (18)
(k) = (P (k) ® L,2)diag[G; ® G,
2(k) £ (P (k) ® Ly2)diag[G; ® Ai].
It follows immediately from (18) and (1 ) that
k-1
P(Q(K) =A(Q(0) + H A(@) | PO e(W (i) +
1=0 J=i+1
k-1 *
2Re | ) H INOI EGEELO))
1=0 Jj=i+1

Now we are ready to state our result on the boundedness
of the process state.

Theorem 12. Given a discrete-time MJLS (S) as in (3)
with unknown and time-varying TPM P(k) € convPy,
then p(AL) < 1 if and only if z = {z(k);k € No} € C"
for every w={w(k);k € No} € C", x¢ € Cf and 6y € Oy.
Proof. To prove necessity (that is, p(AL) <1 = z€C”
Yw e C", xg € CY, Oy € ©y), all we have to show is that
lz]|2 < oo since clearly x, = (x(0),...,z(k)) € Cp Vk € Ny.
Using the triangular inequality in C™ on (4), we obtain

* k—1||/ k-1 :
(TLsic)r 0] 3{ Thsisfnto
2i=0 |[\j=i+1 )
Let us consider the first term of the right hand side of (19),

which is clearly related to the noiseless version of system
(8) as in (3), i.e. when w(k)=0 VkeNy. Since p(AL) <1,

k * 1/k
lim H( - A*(i)) = p(AL),
k—o0 =0
by the radical test for infinite series, we can state that
Al < ¢*, VE>EK, YC¢e (p(AL),1), for some k' €Ny.
With 8'=(* suprier, 4,1, 0<j<p 1Tl 8" > 1, we have

Al < B¢, Yk € N. (20)
From the definition of the trace operator, we have that

B (1)) =Bl (0)] Dt (Bla ") Lo -
=37 w@m) <n Y lQuk

Observing that if X is a ﬁnlte dlmensmnal hnear space,
then any two norms on X are equivalent (Kubrusly, 2001,

[z(k)[|2< (19)
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Theorem 4.27), we will make use of Frobenius norm,
defined for a matrix M € F™"™ as

IM.||F £ Vtr(MrM,) =
Let us indicate by

M)|[r = [le(M.)]|F-

Al(t=1)n2+1,:n2]e @ matrix obtained by
taking n consecutive rows (starting from ((¢ —1)n? +1)-th
row, t=1,...,N) of A. Then,

1Qu(F)l|r = llo(QuE) |l =[IA{(-1)n241,m21eP(Q(0)) ]| #

< N =1n2+1,m21e | E[[R(QO) 7 < IN|F[[A(Q(0)) |-
Conblderlng that

[2(Q(0)|lF = \/Z

we have that
K < [|A
. @@l < IMFIQ

E[llz(k)["] < nz 1Q.(K)[F < N [[Al[r Q)1

Since (20) holds for any equivalent norm, and having

||Q(0)||1=ZN Q. (O)II=ZN_ [E[z(0)2"

<Z E[[|zo0[*1{p(0)=03] = llzol[3,
we can finally wrlte
E[[|z(k)|%) < nNB'¢*||xoll3 = BCF||zol3
By Proposition 8 in the noiseless case (where the second

and third summations in the expression of @Q;(k+1) are
equal to zero) and (16), it follows that, Yk > k' € Ny,

|[vec(

)Q.(0)) = Q0]

(0)[l1, Ve € N.

(0)1(0)=4]ll

k=1 o\ 2 k 5
(TS 4i0) e <ok faall, o0
2
B=nNg, §'=¢C*  sup ||, F'>1, (22)
IeIl; [AL], 0<j <k’
Ce(p(AL), D). (23)

Following the same steps for the second term of the right
hand side of (19), we obtain VieNj_;

* 2
k—1
1145, | Goyw(@) | < nNB/CE=HIGW (1) G|,
j=i+1 )

with " and ¢ as in (22) and (23) respectively. Since

W (i)l =S "N W, (i |<Z E[[Jw(i)|*1g0)=g] =
o bove g Ellw@I? }—nw( )2,
bl * 2
145 lGaapo )| < nNB' MG w15 (24)
j=i-+1 )

From here on, our proof of necessity follows the steps of
the proof provided in (Costa et al., 2005, Theorem 3.34)
for time-homogeneous MJLS with bounded process noise.
Applying the bounds obtained in (21) and (24), we can
state that there 3¢ € (p(Ar),1) and ' >1 such that

la(k)ll2 <3 Gooibi

G- 2 (VW BB (VnNB)|2(0)|2,
Bié(\/nTB/)HGHmax lw(i=1)2, i=1.

Let us set a= ({o,(1,...) and b2 (Bo, B, ... ). Since a €,
(ie. D02y |G| < o0) and b € £y (that is, Yooy |B8i]* < 00),
it follows that the convolution ¢ £ a % b = (cg,c1,...),

where
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o 2 Ceifi, lies itself in £y with [lella < [Jafl1]|b]2
(Costa et al., 2005, p. 56). Hence,

Jall> = \/ZjiOme(k)m < ﬁjf_o & = lefl2 < oo.

This concludes the first part of the proof.
Let us prove sufficiency, that is © = {z(k);k € No} € C"
YweC", xoeCl, 6o €09 = p(AL)<1. By hypothesis,

lel3 =3 Elle(k)[?] < o0, Ywel”, zeCy, dye 0.
E[|z(k)|?*] =E[tr(z(k)z* (k)] = tr(Q(k)) > 0, implies that
2|3 = tr(Q(k)) < oo, limy_0o tr(Q(k)) = 0, Accordingly,
as stated in (Costa et al., 2005, p. 44, within the proof of
Proposition 3.24), this implies that

klim Q(k) =0, YweCl", x€ Cg, 0y € Og.

—00

Since the last statement holds for every w € C", we can
make w(k) =0, Vk € Ny in (3). From (12) we have that
lim

k— o0 -1 Ql(k) =0, Qz(k) c Fan'

Thus, from (8) it follows that limy_, ., Q(k)=0.
Since the mapping ¢ is uniform homeomorphic, also

lim ¢(Q(k)) =0

k—o0
Applying (16), which holds when w(k)=0, VkeNj in (3),
we obtain k1 *

Jim. (HHA (Z)) $(Q(0))=0

From Proposition 4 and Remark 11, this last statement is

true for every Q(0) if and only if p(conv.Ar) < 1. From
Proposition 3 follows the thesis. O

6. ILLUSTRATIVE EXAMPLE

In order to show that having the spectral radius smaller
than one for each matrix A;, i €, is not enough to ensure
the robust stability of the PTI system, let us consider the
MJLS (S) with N =3 operational modes, where the state
matrices associated with the operational modes are

10 1.13 0 0.3 0.13
A = [0 1.2] , A2 = [0.16 0.48] , Az = [0.16 1.14] ’
with Gy =2I5, Go=1.55, G3=15, w(k‘)E [—1, I]QCRQ.

The time-varying probability matrix P (k) is uncertain and
belongs to a polytope with L = 2 vertices

0 0.350.65 0.25 0.75 0
P,=106 04 0 |,PR=|0 06 04].
04 06 O 0 04 0.6

Any probability matrix within a polytope is defined by
Pk)=AE)Pi+ (1= XEk))P, 0<A(k) <1
Let us consider, e.g., also the matrix P’ =0.5P; +0.5 Ps.
The spectral radii p of the matrices A are:
p(A1) = 0.901601, p(As) = 0.905686, p(A’) = 0.937965.

Thus, the time-homogeneous MJLS with TPM P;, P> and
P’ are robustly (mean square) stable (Costa et al. (2005)).
However, the PTT system having this TPMs is not robustly

(mean square) stable, because the JSR, calculated with the
JSR toolbox (Vankeerberghen et al. (2014)), is

P(AL) = [Pmin(AL), Pmax(AL)] = [1.024442,1.031096]
This shows us that perturbations on transition probability
matrix P can make a stable MJLS system unstable.

To present this result visually, we report one possible
dynamical behavior of the system. For o = [100; 85] and
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the initial probability distribution pg = [0.33,0.34,0.33],
we have obtained the following system trajectories.
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Fig. 1. A possible trajectory of z(k) when TPM is P;.
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Fig. 2. A possible trajectory of of x(k) when TPM is Ps.

Figure 1 shows us a trajectory of the z(k) having only
the time-homogeneous TPM Pj, while Figure 2 presents a
system trajectory, when TPM used is always Ps.
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Fig. 3. A trajectory of z(k) [P(k) switching within P& Ps)

Figure 3 reveals a trajectory of the system state vector
when the TPM is time-inhomogeneous and is switching
within the polytope defined by vertices P; and Ps, evincing
instability of the system.

However, by shrinking the polytope defining the uncer-
tainty of the TPM to e.g. the new vertices

P, = 08P, +0.2P,, D, =02P + 0.8P,,
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the corresponding time-inhomogeneous system is robustly
(mean square) stable, because the joint spectral radius is

PAL) = [pmin(AL), Pmax(AL)] = [0.971756,0.972553].
Figure 4 reveals a trajectory of the system state vector
when the TPM is time-inhomogeneous and is switching
within the polytope defined by vertices P; and Ps, evincing
robust stability of the system.
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Fig. 4. A trajectory of z(k) [P(k) switching within P& P,]
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