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Abstract: Networked control systems using wireless links to convey information among sensors,
controllers, and actuators greatly benefit from having an accurate estimate of the communication
channel condition. To this end, the finite-state Markov channel abstraction allows for reliable
channel state estimation. This paper develops a Markov jump linear system representation
for wireless networked control with intermittent channel state observation, message losses, and
generalized hold-input dropout compensation. Furthermore, it exploits the emerging structural
properties of the system to solve the finite-horizon linear quadratic regulation problem efficiently.
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1. INTRODUCTION

Wireless networked control receives considerable attention
from industry and academia thanks to its mission-critical
applications in industrial automation, intelligent trans-
portation, telesurgery, and smart grids. See, e.g., Park
et al. (2018), Eisen et al. (2019), Pezzutto et al. (2020), and
Liu et al. (2021) as an overview of significant recent ad-
vances in the wireless networked control systems (WNCSs)
research. One of the central topics in this research area is
estimation and control over fading channels, explored, e.g.,
in Schenato et al. (2007), Gupta et al. (2009), Heemels
et al. (2010), Gongalves et al. (2010), Ding (2011), Pajic
et al. (2011), Minero et al. (2013), Quevedo et al. (2014),
Yu and Fu (2015), Zacchia Lun and D’Innocenzo (2019),
and Impicciatore et al. (2021, 2022).

Dealing with control systems that exploit wireless links
often highlights the communication channels’ stochastic
behavior. Indeed, wireless links are subject to path loss,
shadowing, and fading when mobility is involved, which
translates into time-varying message dropouts, message
delays, and jitter (Goldsmith, 2005). Thus, having an
estimate of the channel condition at the control application
level is highly desired for correctly modeling the stochastic
properties of a WNCS.

The finite-state Markov channel (FSMC, see, e.g., Sadeghi
et al. (2008)) represents a simple yet powerful analytic
model capturing the main features of the wireless link.
Despite the availability of the FSMC model, when deal-
ing with the application level, packet dropouts dynamics
are often modeled as realizations of a Bernoulli process
(Schenato et al., 2007; Hu et al., 2021), which may result in
an oversimplification of the complex communication sub-
system dynamics and incorrect evaluation of the control
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subsystem behavior, for instance in terms of stability as
proven in Zacchia Lun and D’Innocenzo (2019).

This paper exploits an FSMC wireless links abstraction to
model packets dropouts, as in Zacchia Lun et al. (2020).
Specifically, a uniform partitioning of possible values of
signal-to-interference-plus-noise ratio (SINR) provides the
channel state space. The probability of the instant value
of the SINR being between two adjacent thresholds gives
us steady-state probabilities. Finally, integrating the joint
probability density function of the SINR between two
consecutive packet transmissions determines the transi-
tion probabilities between states. Moreover, the SINR is
analytically computed based on a real scenario where the
characteristics of the communication protocol used in the
wireless link are taken into account together with channel
impairments.

Similarly to Zacchia Lun and D’Innocenzo (2019), this
paper assumes that a remote controller receives the FSMC
state estimates with acknowledgments (ACKs) of the suc-
cessful transmissions. However, this paper addresses for
the first time a different scenario where a negative ACK
(NACK) mechanism does not provide for delivering the
FSMC state information. Such a scenario happens when to
save communication resources, the network does not allow
NACK transmissions. Furthermore, the simplest versions
of link layer protocols only include ACKs: they do not need
extensive numbering of frames and only require limited
buffering efforts on both transmitter and receiver sides.
Then, the controller has no access to the wireless channel
state information for the whole duration of a packet error
burst. Thus, we introduce a novel wireless networked con-
trol design where the feedback gain depends on the avail-
able Markov channel state information and packet-loss
length. Furthermore, we account for a generalized hold-
input dropout compensation strategy at the actuation end.
The considered setting has remarkably high complexity
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and requires a deep understanding of the structural prop-
erties of the system to obtain a computationally treatable
accurate solution, as discussed in Sections 3 and 4.

Our main contribution is deriving a rigorous Markov jump
linear system (MJLS) model for wireless networked control
over lossy links with intermittent channel state observation
and generalized hold-input dropout compensation. We also
provide a finite-horizon linear quadratic regulation (LQR)
solution to the optimal control problem that exploits
the structural properties and reduces the computational
complexity compared to a standard MJLS solution.

The rest of the paper has the following structure. Section 2
presents the WNCS model for the considered scenario,
Section 3 provides the equivalent MJLS form derivation,
and Section 4 introduces an efficient solution to the LQR
problem in the finite horizon setting. Section 5 gives the
concluding remarks.

2. MODEL FORMULATION

Consider a linear stochastic system with intermittent con-
trol packets due to the lossy communication channel and
generalized hold-input dropout compensation strategy:
{a}k+1 = Az + Buy, + wy, (1)
uy, = Ogug + (1 -0k )puy_q,
where zj, € R is a system state, u;, € R™ is the control
input to the actuator, A and B are state and input
matrices of appropriate size, uj € R"™* is the desired
control input computed by the remote controller, and
wy € R™ is a Gaussian white process noise with zero
mean and covariance matrix Y.,,. The process noise wy
is assumed to be independent of the initial state xo and
of the binary stochastic variable Jj, which models the
packet loss between the controller and the actuator: if the
packet is correctly delivered, u,, =uj; otherwise, if lost, the
actuator applies the last available control input multiplied
by a scalar ¢. This is the generalized hold-input dropout
compensation strategy (Moayedi et al., 2013), that covers
both the zero-input dropout compensation strategy (with
¢ = 0) and hold-input strategy (with ¢ = 1) as special
cases. See Moayedi et al. (2013) and Yu and Fu (2015) for
a more general discussion of dropout compensation.
The number of consecutive control packet dropouts (a.k.a.
packet-loss length (Lu et al., 2018)) observed by the
controller at a given time step k is modeled as a random
variable 3;,.. The value of 3;, is incremented by 1 when the
reception of the control packet is not acknowledged, i.e.,
when the remote controller believes that the last control
packet sent to the actuator was corrupted and discarded.
The ACK message is considerably shorter than the control
one and much less likely to be corrupted. For this reason
here we make an idealistic assumption that all the ACKs
are always successfully delivered ! . Thus, the absence of an
ACK means that d;_1 = 0. Since the counter 3, refers to a
number of consecutive dropouts, it is reset to 0 when the
transmission of the control packet is successful, i.e. when
the ACK is received. This is the case of d;_1 = 1. Formally,

3= (1-0k-1) (31 + 1) (2)

1 This assumption allows focusing on the problem at hand without
burdening readers with tedious technical details. For the sake of
completeness, we underline that the assumption of an error-free
ACK link can be readily relaxed by introducing an additional binary
stochastic variable modeling the successful delivery of the ACK
that would also evolve according to an adequately derived FSMC
describing the corresponding wireless link.
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Notice that, by iterating (2) over multiple time steps,
3 =L < 0k1_¢=1A0_1=0VteZst. 1<t<L. (3)

We remark that if £ =0 then {t}g 1 = @, which means that
(3) becomes simply 3;, =0 < dj_1 = 1.
This paper concerns a wireless networked control problem,
where an FSMC abstracts the communication link between
a controller and an actuator. Zacchia Lun et al. (2020)
showed how to obtain a consistent and accurate FSMC
model suitable for a wireless industrial automation sce-
nario. Such a model can capture the average and extreme
behavior of the radio link through the link quality metrics,
such as the long-run mean packet error probability and
the maximal number of consecutive dropouts (from now
on, denoted by L). Clearly,

0<s3 <L (4)

A state of an FSMC is the output of a discrete-time
Markov chain that takes values in a finite set 5= {s;},.
The probability of successful packet delivery and packet
loss are conditioned to the state of the Markov channel:

P(6p=1]0g=5;)=0;, P(3r=0]|0,=s5)=1-6;. (5)
In other words, each state s; is associated with a binary
symmetric channel (BSC) with error probability 1-4;. We
remark that the definition of L presented in Zacchia Lun
et al. (2020) without loss of generality requires dy = 1.

The evolution of the FSMC is determined by the tran-
sitions between its states, which occur with probabilities

N N
Pij = [P(Hk =5 | Op_1 = 57,’) >0, Zj:lpij =1. (6)

These probabilities are gathered in a transition probability
matrix (TPM) of the Markov channel denoted by P.:

P [pi]}Y, - (7)
In many practical wireless communication scenarios, for
instance, when the networks are based on IEEE 802.15.4
compatible hardware 2 , the state of the FSMC is available
to the receiver (Zacchia Lun et al., 2020). So, similarly to
Zacchia Lun and D’Innocenzo (2019), we assume that the
controller observes Markov channel states via ACKs, which
become available only after the most recent decision on the
control gain to apply has been made and sent through the
channel since the actual success of the transmission is not
known in advance. However, the ACKs are sent only when
the control packets are received (i.e., when dx_1 = 1).
Without a negative acknowledgement mechanism the con-
troller cannot know the state of the FSMC estimated by
the receiver. Thus, unlike Zacchia Lun and D’Innocenzo
(2019), we consider that the state of the FSMC is not
available to the controller for the whole duration of the
packet error burst, i.e., the information set available to
the state-feedback controller is formally defined as

Iy = {(wt)fzo ) (375)?:1 ) (et‘l—it )521} . (8)
We remark that here we make an idealistic assumption
that all the system state variables are measured and sent
to a controller over an error-free link. This assumption
is mainly made to streamline the presentation. In our
future work, we plan to extend the developed results to
the output-feedback control affected by the packet losses
over all three wireless links present in a general networked
control system architecture, namely those between sensors
and remote controller (sensing link, or downlink), between
controller and actuators (actuation link, or uplink), and
between actuators and controller (acknowledgement link).

2 The standard networking protocols for wireless industrial automa-
tion, such as WirelessHART, ISA100.11a, and Zigbee PRO 2015, are
all using IEEE 802.15.4 standard radios.
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Fig. 1. The architecture of a closed-loop system with control inputs
delivered to actuators over a radio link. The link state 0j is
measured for each received packet and fed back to the controller
with an acknowledgement issued only after successful transmis-
sion. The transmission outcome is indicated by binary random
variable d;. The generalized hold-input dropout compensation
strategy is applied when a control packet is dropped out.
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Fig. 2. A timing diagram for a closed-loop system with packet
losses on the radio link between the controller and actuators.
In this example, at time step k-1, the control packet containing
uf_; is corrupted during the transmission, which we indicate
by a dotted line. The receiver detects the error and discards
the message, while actuators apply a dropout compensation
strategy by sending a scaled version of the previous input signal,
i.e., up_1 =puk_o depicted by a dotted rectangular. At time step
k, the control signal ujy is received correctly, as shown by a
solid line, so the ACK is sent to the controller (§;=1), together
with the current estimation 6y of the state of the link. In this
case, actuators apply the received control signal, uy =uj, so the
related rectangular is shown as solid.

To this end, we have already shown in Impicciatore et al.
(2021) how to design the optimal output-feedback con-
troller that can be obtained by solving the optimal state-
feedback control problem and the optimal filtering problem
separately (for the case of a wireless networked control
scenario where the packet losses occur in both sensing and
actuation links, but with an additional negative acknowl-
edgement mechanism for the uplink as in Zacchia Lun
and D’Innocenzo (2019), and the zero-hold compensation
strategy for all the considered radio links).

Fig. 1 shows the architecture of the closed-loop system,
while the related timing diagram is reported in Fig. 2.

2.1 Problem statement

We are interested in a controller that fully exploits its
information set. Thus, we study a state-feedback controller
which gain depends on both Markov channel state and
packet-loss length. Formally, we search for a controller of
the following form.

U = K 0015 ) Tk 9)
The controllers that are independent from the packet-
loss length and/or FSMC state are just more conservative
special cases of the considered control scheme because they
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impose an additional constraint of having the same gain
for all packet-loss lengths and/or for all observed states of
the Markov channel.

3. MARKOV JUMP LINEAR SYSTEM MODEL
DERIVATION

In this section, we derive an MJLS for a generalized hold-
input dropout compensation strategy over a lossy channel
modeled as an FSMC by assuming only ACK messages to
communicate the channel status to the controller:

Proposition 1. Given a system defined by (1), an FSMC
model defined by (5) and (6), an information set defined
by (8), and a control law defined by (9), the state-feedback
closed-loop system dynamics are given by an MJLS

g1 = Awy 2k + Buy ug + Wi,
ug = Koy 1 Vi (10)
Y = Cuwy, Ries

where AwkE[R(L+1)nm><(L+l)nm’ [Bw)ce|R(L+1)nm><nu7 [KWkERnuxnm,
Cop € R™=*(E+Dne and TPM [py i, ,, with L= (L+1)2N2,

5§ 1
characterizing the Markov chain wy, are defined as in the

proof.
Proof. From (1) and (9), for any packet-loss length 3, <L,
Tl = (A + ékBK(3kv9k—1—;k))xk+
A T o (L = 008" BE 0y oy ) Thmi + Wi (11)
From (3), 3;, =¢ completely characterizes the sequence of
£+1 observed values of §j_1_¢, for t € {1}f o- Thus, for 3, =¢,
Tp1 = (A + ngK(Z>0k—l—é))xk+
+(1-6p)od +1BK(Ekflfeaekfz—z—;k_l_g)xk*kf + Wk (12)
It is evident from (12) that the reception of the control
packet or the lack thereof determines two distinct states
of the system. This fact allows us to partition the state
space of the system based on the last two states of the
Markov channel observed by the controller after the last
transmission and the related sequences of acknowledge-
ment messages for two consecutive packet-loss intervals.
Specifically, the value of §j, is encoded by the value of 3, ,;

which is available in the information set Zj,1. Then, from
(2), (3), (4), and (11), we have that, for all 0<n<L,

Tre1 = (An+1 + (Z?:l ¢n_jAj)BK('Zk,—nagk—l—n—';k_n)

+¢"BK(, ))xk—n +wy, forz,,.=n. (13)

0k—1—71—3k7n
Since A, B, ¢, and n are known parameters in (13), it
is convenient to define the following parameter-dependent
matrix. Dy = Z;:l "I AIB + ¢"B. (14)
Thanks to the distributive property of the matrix multi-
plication and to (14), we can rewrite (13) as

Tpyr = (A"+1 ) K (5 Ohtnegy )) Tpop + Wy By1 =71 (15)

It is evident from (15) that xj,; depends on zj_,, where
n < L. So, from now on, we consider the current system
state xj and the previous L states in a single augmented
state %, defined as

0= (OLowh) =lof oy =) (9
which recalls that the transpose of the horizontal concate-
nation (denoted by @) of the transposed matrices amounts
to the vertical concatenation of the same matrices.

By convention, for any time index 0 <t < L, let z_; = x,
so the initial state of the augmented system is given by

T T
%0 = (Droals) =(Dron) =[zg o5 ~a3]". (7
Clearly, the size of %y is (L + 1)n,. The augmented state
for the process noise has the same size and is defined by

v = (w] o (DF,07)) = [w] 07 -~ 07]". (18)
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Even if the value of 65, , does not appear in (15), it is
available in the information set Zy,1, and together with
3141, it defines the next control input to be transmitted to
actuators. So, we need to include 055, , in the state space
partitioning. At this point, we can define the operational
mode of the system after the last attempted transmission
of the control packet as

W = (3k+17 Ok—sps12 Bz y ) Ob-1-zi 130y, ) . (19)
This definition of wy allows us to couch the systems in the
Markov framework, as presented next.
By convention, V¢ >0, let 6_; = 6y and §_; = 1, so from (2)
and (19), we have 3_, =0 and w_; = (0,60,0,09).
Consider arbitrary indices 1 < ig, i, jg, jt < N of the
states of the Markov channel, and arbitrary control packet-
loss lengths 0 < h,f,m,n < L. Let 3., = n, Op_p = 8j,,
3p—p =M, and Oy_1_n_m = 55, so that wy = §, and 3, = ¢,
Ok—1-0=58iy, 3j_1-¢ =N, Ok—2-0—n=Si,, 0 that wg_1 =1, where
i, j are the indices of the operational modes associated to
the given Markov channel states and packet-loss lengths.
Clearly, 1 < &, § < (L +1)>N? = L. In the rest of this
paper, we will use interchangeably the notation wy = j
and wy = (n,sj,,m,s;,) depending on whether we prefer
to emphasize the general properties of the MJLSs or to
put attention to the structural properties of our specific
problem. The assignment of the values to h, £, m, and n
uniquely identifies the related sequences of ACK messages
for each two consecutive packet-loss intervals, namely

k-1 k

(66)¢ g-o—p-n> a0 (8t); jo_1 o
Let & denote a matrix of the standard basis for n, x
(L+1)n, block matrices with blocks of size n, xn,. Its
i-th block is the identity matrix, while all the other L
blocks are zero matrices. Let & denote the nil matrix of
the same size. These standard basis block matrices help
define the filling block, common to all augmented system
state matrices associated with the operational modes. We
denote this Ln, x(L+1)n, block matrix by I and define

itas I'= ((DlL 1 SJ)T. For notational convenience, we denote
the nil matrix of the same size as I by O. Formally, O £ 01.
Then, for each wy = § = (n,s;,,m,s;,), we define the
augmented system state, input, and output matrices.
sy, massg) = (A 1€001) ©T7) = B (20)
Thus, the augmented system state matrix A,, depends
only on the value of the packet-loss length 3,.;, which

is observed after the last attempted transmission of the

control packet. B

)= E1P(n) = Bny- (21)

("‘Sjt’m’sjf
It is clear from (21) that, in addition to the obvious
dependence on the parameter ¢ characterizing the adopted
generalized hold-input dropout compensation strategy,
also the augmented system input matrix B, depends only
on the value of 3.
From (15), it is evident that the control input available
to the actuator depends on x5, , which is one of the
components of the augmented system state z;. Thus, the
desired control input is filtered through the augmented
system output matrix C,, :

Cln.sjy masjp) = Ent1 = Ciny-
As before, the augmented system output matrix depends
only on the value of the packet-loss length 3, .
Then, the system (1) with a linear state-feedback control
law as in (9) is expressed in the augmented form as (10).

It is immediate to verify that the augmented state system
(10) is equivalent to (15) when

(22)
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Ko, =K, =
k-1 sy Oh=1-3p41~30 5, | )

if 31,41 = 0;

_ K(?kaek—l—gk) ;
otherwise;

= (23)
G-ty Ok=2-3p =351, )
due to the constraints imposed by (2). Specifically, (23)
underlines that the last two components of wy in (19)
correspond to the first two components of wi_1 when the
last control input is received correctly, i.e., when & =1
so that 3,,; =0 and u, =uj, while they are equal to the
last two components of wy_; when the control input is lost
and the dropout compensation strategy is applied. Notice
that K,,_, describes the control gain as it is seen from the
perspective of actuators, and 3, appears in the expressions
of both gains at the right hand side of (23).
From (10) it is evident that the augmented system state
7j, evolves according to the operational mode wy, which
is observed only after the last transmission of the control
input, and to the feedback control gain K,,, , , that depends
on one time-step delayed operational mode observation.
For characterizing the stochastic behavior of the system,
we need to compute the transition probabilities between
its operational modes, that we denote by ps;. Formally,
Pig 2 P (wi = §| w1 =1). (24)
To write the explicit expressions of these probabilities in
a compact way for different values of the states of the
Markov channel, and control packet-loss lengths, we need
to define two additional matrices related to the TPM of the
Markov channel. The first matrix, denoted by Py, stores
the probabilities of successful packet delivery in a state of
FSMC starting from a certain previous state. Specifically,

- N
Py =[pi;o;]; - (25)
The second one is denoted by P, and describes the
probability of the control packet dropout in a state of

Markov channel starting from a specific previous state.

FOI'HlaHY7 P = [pij(l _ Sj)]zl'\,]jzl . (26)
Obviously, we have that
Py + P =F.. (27)

Depending on values of indices 1 < ¢, i, jg, jt < IV of the
FSMC states and on values of control packet-loss lengths
0<h,l,m,n<L used in assignments 3., =7, Op_pn = 5j,,
Bhen =M, Ok—1—n-m =5j,, and 3, =4, Or_1-¢=S;,, 31_1_¢= P
Ok—2—¢-1 = Si, there are three different expressions for the
probabilities of transition between the operational modes.
Due to the augmented system structure, most transitions
are impossible and thus have zero probability.
Specifically, when the current control packet is received,
then the previous control input is not applied anymore.
This means that after the successful transmission d; =1
and 3;,; =0, so that n=0, and 3;_,, =3;. In other words,
when n =0, only the transitions between the operational
modes with m=/¢ have non-zero probability of occurrence:
IP(Ek+1 =0, ek =Sy, B =M F ev akflf'm = Sj¢ |

B =0 Op-1-0 =55, 310 = h, Op—2-g-p = 5i;) =0 (28)
since the two events are disjoint and thus cannot both
occur at the same time. When n=0 and m =/, the observed
states of the Markov channel in two operational modes
should be consistent, since any jg #it makes the transition
impossible:

P(3k1 =0, Ok = 55¢s 3 = €, Ok-1-¢ = Sj # Siy |

3 =4 Op-1-0 =85, 310 = h, Ok—2-¢-n = 85,) = 0. (29)

At this point, let us denote by e, the vector of the standard

basis of RY: it has the i-th component equal to 1, while
all its other components equal 0. When n=0, m=/, and
je=1¢, we have that

P(3p41 =0, 0k =S4, 36 =€, Ok—1—¢ = Siy, | 3p.= €, Op_1-0= sS4y,

3h-1-0=h, Op_a_¢_n=si;) = €] P‘Pe . (30)
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When the control packet sent at time step k is not received
correctly, the actuators apply the properly scaled last
available control input. In this case, §; =0, and the counter
of consecutive control packet dropouts is incremented.
Specifically, 3,1 #0, and from (2), we have that 3;,; must
necessarily be equal to 3;,+1, meaning that VneZ, 1<n<L,

P(3pe1 =73, #n-1)=0. (31)

A consequence of (31) is that
P(’ék-{»l =n, O = Sjgs Bh-m = M, Ok-1-n-m = Sjg |

3=0#n—1,0k 1¢0=5i, 3p-1-0= N, Op—2-0-n=5i;) =0. (32)
So, consider 3;,,=n>0 and 3, =¢=n-1. It is obvious that
in this case k—1-£=k-n, so that a transition between two
operational modes has a non-zero probability of occurrence
only if jy=1¢, m=h and jg=i¢. Formally, we have

[P(’Ek+l =Mn, ek—n = Sjy F Sigy Bp—p =M, ek—l—n—m = Sj¢ |

3= =1, 0k n=Siy, 3p_p =P Op1-n-n =5ip) =0; (33)

P(3k41 =1 Okn = Sy, B =M # R, Op1_nm = 54 |
3 ==L, 0k n=8iy, 3p-n =h, Op_1-n-n = 5i;) =0; (34)

P(35+1 =M Ok—n = Sigs 3pon = P Ok—1-n—n = Sjp * Sig |
3 =N =1, 0p_n=8i, 3p_n =P Ok-1-n-n =8i) =0 (35)
since the events in (33), (34), (35) are pairwise disjoint.
The only remaining case is n={¢+1, jy =iy, m=h and jg=1is.
P(3rs1=0+1, 0 1-0= Siy, 3p—1-0= Dy Oh20-n=8ig | 3= ¢,

Ok-1-0 = Sig> 31— = h» Ok2-0-n = 5ig) = €], PLPy1 (36)

by the chain rule of probability, (3), the d; independence
of 0p—¢ and Oy_; (that holds for all t>1), the law of total
probability, (5), the Markov property, (6), (7), (26), and
the definitions of the matrix product, the vectors of the
standard basis, and the vector of all ones.

From (28)—(30) and (32)—(36), we obtain the general ex-
pression for the augmented system transition probabilities
between operational modes for all 1 < ¢, 4, jf, jt < N,
0<h,l,m,n<L, with h, ¢, m,n,i¢, iy, j¢, jt €Z:

P(wi = (n,85,,m, 850 ) = § | wi—1 = (€, 854, hy 85 ) =8) = gz =

e;tpfplejt ifn=0, m=¢, and js = iy;
= e;tpfpgl ifn=0+1, m=h, je=1if, and jy =ig;  (37)
0 otherwise.

For any number N of Markov channel states and arbitrary
packet-loss length L, (37) defines an (L+1)?N2x(L+1)2N?
stochastic matrix having (L+1)?N3+L?N? « (L+1)*N*
non-zero entries with up to N?(L+1)+N L different values.
For example, with N =3 and L =3, there will be at most
45 different values within 513 possible non-zero entries
among the total of 20736. For notational convenience, we
refer to this TPM as [[D‘u’j]gjj |» where L=(L+1)2N? is the
operational modes index set cardinality.

Remark 1. The sheer size of the augmented system may
make it intractable in general, so the MJLSs framework is
used only as a tool for deriving the structural properties
of the system (1) in a systematic way, by exploiting the
sparsity of the above TPM. For notational convenience, we

will indicate the non-zero entries of [[pﬁj];Lj , as follows.

Pi,cj, = €], PIPe;,, Ve< L, 0>0; (38a)
Pi12e] PPl VE<L-1,020. (38b)

It is also opportune defining p;,¢1 for £=L:
PiyL1 =0, (38¢)

allowing us to write exact expressions concisely.
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4. OPTIMAL FINITE-HORIZON LQR

In this section, we derive a control law as in (9) that
efficiently solves the finite-horizon optimal LQR. problem.
Our considerations on the computational complexity are
provided at the end of the section. The controller optimizes
the average cost function defined as follows. Let Q=Q" >0
and R=R" >0 be the state weighting and control weighting
matrices of size ng xn, and n, xn,. Let U be the set
of all admissible control laws satisfying (9) according to
the informational set (8), observed from the actuators
perspective. Let u e/ be an admissible control law seen
on the actuation end of the communication link. Formally,
u:(ut)iC o- For any time horizon 7> L and any admissible
control law, consider the following quadratic cost function
Ty (z0,00,u) = [E( Z:_Ol (xZQ:ck + uZRuk) +zLQrr |ZO) . (39)
In view of (11)—(13), and (15), it is convenient to represent
the system in the augmented form. Thus, we define
Q=&,Q¢. (40)
Clearly, Q@ = Q" > 0 implies that Q = Q" > 0. Then, for
any time horizon T > L and any uel, the quadratic cost
function J, can be applied to the augmented system, i.e.,
T (%0, w-1,u) = [E( f:_ol (2, Q2 + uj Ruy,) + 2 Qzp |I0) . (41)
The optimal finite-horizon cost-to-go function is defined as
I (#agy w-1) = T (ﬂk, wg-1, (uf )tT;kl) =
= min [E( Z:kl (xz{th + uIRut) + 2 Qxzr | Ik) . (42)
(ue)T3te

We first show that it can be expressed as follows.

T (Raey W-1) = KR (k1) %k + I(kywp1)» (43)
where, for all values of w1, X(j4,_,) are symmetric pos-
itive semi-definite matrices with X .,y =Q, which are
the solution to the coupled Riccati difference equations
(CRDEs) defined next, and g4, _,) is a nonnegative ad-
ditive term of the cost-to-go that depends on the process
noise characteristics, with g(r . ,) =0. Since the system
(1) is affected by the process noise, we recall that wy, is
independent from the initial condition (zg,68y) and from
the Markov process (J¢, 0;), that describes the FSMC char-
acterizing the communication link between the controller
and actuators, for all values k& and t of discrete time.
From (2), (3), (8), and (16)—(19), this implies the wy
independence of %y, wy, and Z;, for all k>0, ¢t > 0. Since
E(wg)=0, we have from (18) that

E(oa) = (D5 07) =[07 - 07] = 0% = 0. (44)

Let X, denote the covariance matrix of the process noise

affecting the augmented system (10).

Yo £ E]SwEr. (45)

From (18), (45), (44), and the basic properties of the
covariance matrix, we have that

E(wwy) = o+ E(wi) (E(wg))" = . (46)

We will see how X, affects the value of the additive term
9(k,wi_,) later in this subsection.

Meanwhile, let us denote the main components of the

solution to the CRDEs at time step k by X(; 1w, ), i-€.,

e, = Bizo Xikwop =08 (X 0,k o XL bwog 1) - (47)
The derivation of the explicit expression for X, _,) and
9(kwy) is a part of the proof of (43) via a backward
induction, which is only outlined here due to space limits.
The base case at the final time step k=T results in (43)
with (7w, ,)=Q and g(p,_,)=0 since from (8) and (16)
we know that x7 is Zp-measurable, and, by its definition
(40), Q = Q" = 0 is a known augmented state weighting
matrix. By the inductive hypothesis, for any 0<k<T-1
there exist X(pi1,w,) = szﬂ,w;c) >0 and g(j+1,4,) 20 such
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that (43) is verified for %41 and wg, so we can use the
definition (42) of the optimal cost-to-go at time steps k+1
and k, the tower property of the conditional expectation,
and the Bellman’s principle of optimality to state that
T (e, wie— 1)(— min E(XkQﬂk+ukRuk+J (Zros1,wi) | Tie) -
we t k
After substituting J*(#x+1,wr) in the previous equation
with its expression from (43), we also substitute %1 and
uy, with their expressions from (10), obtaining (48), re-
ported on the following page. By the inductive hypothesis,
X(k+17ﬁ) = szﬂ’j) >0, which, combined with (47), implies
that all main components of the solution to CRDEs are
symmetric positive semi-definite, i.e., VO<i< L,
Xi, ka1, 5) = X(i pen, gy 20 (49)
Thus, the result of w|X(yi1,,, )Wk is a real nonnegative
scalar, that may be always seen as a 1x1 matrix. Then,
WER ki1, wp ) Wh = 0 (WER (et 1wy ) Wi ) = 0 (R (ka1 wp ) Wawg) - (50)
From the definition of the conditional expectation, consid-
ering that %, and wy_1 are Zx-measurable, as can be seen
from (8), (16), and (19), by the linearity of the expected
value, conditional expectation, and trace, by the distribu-
tive property of the matrix product, the w; independence
of %9, wy, and Zy, for all k>0, ¢t >0 (which by induction
implies the independence between wy, and 2y ), (44), (46),
and (50), we obtain (51) shown on the next page.
From (37), (38), and (20)—(23), we rewrite (51) explicitly
for any value of wy_1=(¥, s;,, h, S, ). The last two addends
in (51) are independent of %z; and define the term gy ., ,)-
In particular, since the trace of a block diagonal matrix
equals the sum of traces of its diagonal blocks, we obtain
from (45) and (47) the explicit definition of g ., ,) for
any wg-1=(4, si,,h, ;) in (52) on the following page.
Since, by the inductive hypothesis, g(x+1,.,) 20 for any
value of wy, from (49) and Q=Q7 =0, we have g4 o, ,)>0.
We remark that for ¢ = L, both addends of the factor
multiplying p;,¢1 in (52) are formally undefined, since, by
its definition, 0<¢< L, but thanks to (38c), they disappear
in the case above. We will apply the same consideration
to all the following expressions involving p;¢1. Then, to
find the optimal values of gains Kk, 1,5, and (ks by 1)
imposed by (23), we need to search the stationary point
of (51) with respect to the gains mentioned above. So,
we can perform the matrix differentiation. The stationary
points of (51) for K(k,e,s,,) are defined for all £ < L by
(53), shown on the next page. From (16), (20)—(22), (14),
and (4%}, we have that (53) is equivalent to
=1 Pitm((RJfBTX(o,ml,(o,sjt,e,sit ))B)K(k,é,sit)"'
+ BT X(0,k+1, (0,55, £, 51, ))A)IL“WZ =0. (54)
The previous expression should hold for all possible values
of zx]. Thus xjx] should multiply the matrix of all zeros.
From (6), (7), (24)- (27) (37), and (38),
th 1 Pig s + Pige1 = 1. (55)
For all 7x such that 0<ix <L, we denote by W(; 1 ¢.) the
sum in jg of X(;_ 1 (o, $50.6:51,)) weighted by ps,¢j,, i€,
Wi,k tyig) = Zﬁzl Pigje X (i k(0,55 1,504 )" (56)
Then, from (56), (55), (49), and R = R" > 0, the matrix
multiplying K s, ) in (54) is positive-definite. Thus, we
can express the optimal control gain K (k,l,55,) BS follows.
K(ZJ,S“):*((1*p¢tu)R+BT‘I’(O,k+1,e,it)B)_lBT‘I’(o,ku,e,it)A~ (57)

We recall that K(k7g7sit) is used when the control input
is received correctly, while K(k,h,s,if) is adopted by ac-
tuators when the control input is lost. Specifically, the
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gain K(k’h’sif) is an integral part of the actuation strategy
described by (23) implicitly stating via (19) that 3;,__; =h
and 0o, - =8;, for 3, =L. Thus, the stationary points of
(51) for K, h,si;) A€ defined for the corresponding value of
¢ (being £ < L—1, since from (2) combined with (4) having
3, =L would imply 3,,; =0 and thus the application of the
control gain K(k s ) from (23)) by

2pzte1((R+ (e+1) R(k+1, (641, 5, , b, elf))[B(zu))K(k hysig)’

“Crerny + [B(hl)x(ku (041, 54, by 55, ) Per) #j,%;, C (4+1) =0.

By following the same line of reasoning used to derive (57),
we obtain the following expression for optimal K j slf)
(R+¢(4+1)X(o k1, (641,55, by 5i,) (z+1))

P 1) X (0, ko1, (041, 554 hosip DA 2. (58)
We remark that .,7T (g, wg-1) is a positive quadratic func-
tion, its stationary point corresponds to a local minimum.
Since for each gain we have only one stationary point, this
point constitutes a global minimum. Based on (14), (20)—
(22), (47), (57), and (58), we obtain (43), with g, )
given by (52), and the followmg expression for X o, ,):

(kqhysi )~

Rk, (e, toics hysip )= Q Z]t 1Pzt1’]tﬁ\(0)x(1€+1 (0,55, £ 53, VRO F

3 ) Pitie Aoy R(k+1, (0,55, .53, ) BO Kk 1,5, ) Cl0) +

* Pige1 A1) R(or1, (41,554 by 510 0) Bes 1) K, hysip) Cles) +

+pitllA&_,.l)X(lw-l,(£+1,sit,h,sif))A(€+l)' (59)
By writing (59) explicitly in a matrix form for each ¢ in
wr-1=(¥, 8;,, h, 8i; ), it is easy to see that R(k,(0,51 hosig ) 19
a block diagonal matrix, so we can write the expressions
of the elements X(; 1 (e, $ig hysig)) O its main diagonal as
follows. The first block of X, (e, Sig hosic)) is

X0k (455 hosig) =@ F AT ka1,0,i0) A+ V(1 k+1,0,i0) +

FPig 01X (141,04 1,57, hys5)) ~ A "W, k41,60,i0) B(L-Piye1) R+

+BT\I}(O,kJrl,Z,it)B)ilBT‘I/(O,kJrl,l,it)A' (60)
The last block of Rk (¢s,, hs;) is expressed by (61)
on the following page. All the remaining components of
X(k7(47sit Jsig)) satisfy yet another equation: for any integer
1 <ix < L -1, we have (62) shown on the next page.
In conclusion, (43) is verified through (47), (52), (56), and
(60)—(62). The optimal control gain is given by (57).
We remark that (57) takes into account the generalized
dropout compensation strategy, since K(’;% 0 51,) depends
on the first component of X(k,(é,sit,h,sif))v which, through
(60), takes into account possible relevant values of the
second block of X(j41.,), that itself depends on @,
defined in (14) and on the values of the first and third
block of X(r+2,,,,), for each admissible value of £ and /.
We also underline that each of the L+1 blocks defining a
solution to the CRDEs has the size of n,xn,. By consider-
ing (56) and (60)—(62) instead of (59), we solve (L +1)* N2
equations of size nyxn, instead of (L+1)°N? equations of
size (L+1)ng, x (L+1)n,. Since the lower bound for the
matrix multiplication (and inversion) is Q(m?logm) for
any square matrix of the size m (Raz, 2002), dealing with
considerably smaller matrices translates into much faster
and less memory-consuming operations.

5. CONCLUSIONS

This paper introduced a wireless networked control design
for the systems without access to channel state infor-
mation during packet error bursts. It also presented an
optimal finite-horizon linear quadratic regulator exploiting
the structural properties of the system. The next step is
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\7; (Xky wk*l) :(krrgililu'): (K;;Q)Xk + 9(k+1, wr) + K; CLk [sz’ wk—l)R M(k, wk_l)ka”k+
+ (WZ + % (Alk + CI’k IK-(rk, wk,l)BLk )) R(k+1,wy,) ((A“’k + Buy Kk, wyy_y) Cope ) 2 + Wk) | Ik)- (48)

. L L L
T3 (eywr-1) = min 2] (Q+ Ty Pur 15 AJ R (ko1 BIK(k, 1) €5+ Dgon P13 €1 Kk, 1) BIR (k1 A5 + Dy P15 A Rkt byt

(kywp_1)

L L L
+ Y5 P11 C1 8wy (B BI Rk, 5yBs) Ko 1)) %k + St P98 (Rian, o) + X P13 9k, gy (51)

N
g(k,(l,s,;t,h,sif))Zthzl pitljt(tr(X(O,k+1,(O,Sjt,l,sit))Ew)+g(k+1,(0,sjt,£,s1;t)))+pit£1 (tr(X(O,k+1,(E+1,sit,h,sif))Ew)+g(k+1,(l+1,sit,h,sif))) (52)

N
2300y Pistse ((B+BoyR(ke1, (0,55, 0,50 ) B0)) Kk, 2,31 C0) 262k Cloy + Bloy Rk, (0, 55, £, 550 ) A0 %4 51C oy ) = 0. (53)

Y4 T Y4 T
Pryer ( (A7) X (0 ko1, (41,550 1o A = (A™2) X (0 ka1, (0r1siy hosig ) (o1
T - T £+2
'(R+q’(eﬂ)X(o,ml,(m,s,;t,h,Sif)><1><z+1>) D041y X(O.k+1,(641,55 by DA )

X(L,k,(é,sit,h,sif) -

K ikt shosig ) = Lkt i) + pitel(X(ix+1,k+1,(Z+1,3it sy * (A

T -1
- (A"?) X(o,k+1,(e+1,sit,h,sif))‘I’(eu)(RJf‘b&H)X(o,ku,(zu,sit,h,sif))q’(ul)) D (441 X(0, k41, (441,55, hysi, ) A

validating the results on extensive case studies, expanding
the results to the infinite time horizon case, and investi-
gating the impact of the dropout compensation strategy
on the performance of the networked system.
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