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Abstract—The challenges in analysis and co-design of wireless
networked control systems are well highlighted by considering
wireless industrial control protocols. In this perspective, this
paper addresses the modeling and design challenge by focusing
on WirelessHART, which is a networking protocol stack widely
adopted for wireless industrial automation. Specifically, we first
develop and validate a Markov channel model that abstracts
the WirelessHART radio link subject to channel impairments
and interference. The link quality metrics introduced in the
theoretical framework are validated in order to enable the
accurate representation of the average and extreme behavior of
the radio link. By adopting these metrics, it is straightforward to
handle a consistent finite-state abstraction. On the basis of such
a model, we then derive a stationary Markov jump linear system
model that captures the dynamics of a control loop closed over the
radio link. Subsequently, we show that our modeling framework
is able to discover and manage the challenging subtleties arising
from bursty behavior. A relevant theoretical outcome consists
in designing a controller that guarantees stability and improves
control performance of the closed-loop system, where other
approaches based on a simplified channel model fail.

Index Terms—WirelessHART, Cyber-physical systems, MJLS.

I. INTRODUCTION

Wireless networked control systems (WNCSs) are control
systems where spatially distributed sensors, actuators, and con-
trollers are connected through wireless networks. WNCS are
becoming a fundamental infrastructure technology for critical
control systems in automotive electrical systems, avionics,
building management systems, and industrial automation [1],
and their adoption is even speeding up with the spreading
of most recent concepts of Internet of things (IoT) [2] and
cyber-physical systems (CPSs) [3]. In order to cope with
the automation-specific needs for quantifiably reliable, timely
and efficient communication, the joint tuning of the critical
interactive variables like sampling period, message delay,
message dropout and network energy consumption is required
[1], [4], [5], especially in the perspective of 5G URLLC (ultra-
reliable low latency communication). Since every radio link of
a typical industrial site is affected by harsh propagation (path
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Fig. 1. Dependencies between critical system variables, [1].

loss and fading) and interference [6]–[9], this paper focuses on
the modeling of a process that governs the message dropout,
while taking into account complex interactions among several
critical interactive system variables from [1], as represented
in Fig. 1. In particular, we present a general framework for
deriving an accurate radio link model (that is applicable to
all data dropping links to and from a remote controller and/or
state estimator), and then fix our attention on a link between
the controller and actuator, to show that having a rigorous link
model is essential for solving a wireless networked control
problem. In order to convey the results to a broad audience,
our presentation of the control problem is based on a state
feedback, i.e. we make an idealistic assumption that all the
system state variables are measured and sent to a controller
over an error free link. This assumption can be readily relaxed
by integrating the results from e.g. [10] at a cost of much more
technical and tedious presentation.

While WNCSs are becoming increasingly popular in several
application domains, they are still used only occasionally in
current control loops in the process industry [7]: the lack
of analytic methods for quantifying real-time performance in
WNCSs has seriously hindered their adoption in industrial
automation [11]. That is why nowadays the WNCSs design
must explicitly deal with interdependencies between control
and communication variables, motivating a cyber-physical co-
design approach that integrates wireless networks models
and control algorithms [11], [1]. More in detail, from the
automatic control perspective, the wireless links are intended
as the means to convey information among sensors, actuators,
and computational units of WNCSs. Fading and interference

2430



effects are typically abstracted in terms of frame/packet losses,
that are modeled either as stochastic or deterministic phenom-
ena [12]. The deterministic models proposed so far specify
packet losses in terms of time averages or worst-case bounds
on the number of consecutive dropouts (see e.g. [13]), while a
vast amount of research considering stochastic models assumes
memoryless packet drops, so that dropouts are realizations of a
Bernoulli process (see e.g. [14]–[16]). The works that consider
more general (bursty) packet losses use a transition probability
matrix (TPM) of a stationary Markov chain (see e.g. the finite-
state Markov modeling of multipath-induced fading channels
in [17] and references therein) to describe the stochastic
process that rules packet dropouts (see [10], [14], [18], [19]).
In these works WNCSs with dropped (missing) packets are
modeled as time-homogeneous Markov jump linear systems
(MJLSs). It is noteworthy that most of the aforementioned
works dealing with bursty packet losses (i.e., [10] and the
references from [14]) tackle the problem of the stationary
continuous state estimation, thus assuming the instantaneous
availability of the jump variable. Such an assumption does
not hold true for the networked control problem, where the
operational modes are observed by controller via acknowl-
edgements (ACKs). These ACKs are available only after the
current decision on the gain to apply has been made and sent
through the link, since the actual success of the transmission
is not known in advance. The work [18] solves the problem
of the optimal linear quadratic regulation of MJLSs with one
time-step delayed mode observations, but it does not explore
whether the provided solution effectively stabilizes a closed-
loop system: this problem was recently solved in [19]. How-
ever, the models of packet losses assumed in automatic control
literature are not consistently derived according to detailed
channel models developed by the communications community
and are typically oriented to oversimplify the actual behavior
of the wireless link. Thus, we tackle the aforementioned issue
by presenting a WNCSs modeling framework that accounts
for both a detailed description of the wireless link and control
plant characteristics. This provides useful insights onto the
challenges of performance analysis and related design ap-
proach for WNCSs. As such challenges are well explained by
considering wireless industrial control protocols, we focus on a
networking protocol already developed for wireless industrial
automation, i.e. WirelessHART [20], [21].

The main contribution of this paper is threefold. First, we
provide in Section II a Markov model for a WirelessHART link
subject to interference due to a neighboring network. Second,
we define link quality metrics (LQMs) representing a powerful
tool that is capable to easily evaluate and validate finite-state
channel models to be used in the WNCSs applications. Lastly
we show in Section IV that a MJLS model from Section III
derived from a proper Markov channel model of a radio link
permits to discover and overcome the challenging subtleties
arising from a bursty behavior. Specifically, it can guarantee
stability of the closed-loop WNCS where other approaches
based on a simplified channel model fail. Our results are
supported by a relevant numerical case study.

Access Point

Field
devices

(1)

HART backbone

Access Point

Field
devices

Fig. 2. Mutiple WirelessHART networks connected to the same backbone.

II. A MODEL FOR THE INTERFERED WIRELESSHART LINK

The process of derivation of an accurate radio link model
consists of four major steps [22], that will be described in
detail in the following subsections. Specifically, a thorough
analysis of the communication scenario that identifies the rele-
vant channel impairments and interferers, as will be introduced
in Section II-A, is at the basis of our approach. Then an explicit
form of the signal-to-interference-plus-noise ratio (SINR) can
be derived by following the line of reasoning of Section II-B.
This is the second step of our modeling process. The next step
requires representing the SINR in a form of an approximating
Gaussian process. Section II-C will show a systematic way of
doing it. Once this implicit form of the SINR is available, it
will be plain sailing to compute the related link quality metrics
defined in Section II-D. Such metrics allow us to immediately
assess the average and extreme behavior of the radio link.
At this point, if not exactly the same, then a very similar
behavior can be obtained from a finite-state Markov model
of the communication link. Section II-E will provide all the
necessary details on how to derive this model and its LQMs.

A. Scenario

The first step in developing our model is to study and ana-
lyze the communication scenario. In our reference scenario the
link of interest within a WirelessHART network is interfered in
a certain channel by a point to point communication belonging
to another WirelessHART network. This scenario is shown in
Fig. 2, where field device 1 is at the intersection of two zones.

In such a scenario the clear channel assessment (CCA) mode
provides no benefit, since CCA mechanism is an optional co-
existence feature targeting protocols and modulation standards
different from WirelessHART. Therefore, it cannot address the
case of users of different neighboring WirelessHART networks
characterized by the same channel hopping sequence (which
is the worst possible scenario that also accounts for malicious
behaviors such as deliberate jamming).

Under the presented assumptions, the signal received by the
reference user is

y(t)=y0(t)+y1(t)+n(t), (1)
where y0(t) indicates the desired signal, y1(t) is the interfer-
ence signal, while n(t) is the additive white noise. In this paper,
transmitted signals are assumed to be affected by path loss,
shadow fading and residual power fluctuations left by power
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control. The effect of multipath fading [23] is supposed to be
compensated by the aforementioned power control.

The path loss, ς, is modeled as in the standard [24, p. 274]
for 2.4 GHz:

ς(di) =

{
40.2 + 20 log10(di) if d ≤ 8 ,

58.3 + 33 log10(di8 ) otherwise,
(2)

where di is the distance between the transmitter (Tx) i and the
reference receiver (Rx).

The shadowing is expressed by its log-normal model [23],
which has been investigated for indoor environments in [25],
[26]. It is specified with the term βi(t), that has a Gaussian
distribution with zero mean and variance σ2

βi
assumed constant

during a symbol period. Here i=0, 1 refers to the desired and
interfering signals. It follows that the signal received by the
reference user can be specified as

y(t)=
∑1

i=0
αie

βi(t)

2 si(t) +n(t), (3)

where αi = 10
ς(di)

10 is the path loss coefficient, si(t) is the
offset quadrature phase shift keying (OQPSK) direct sequence
spread spectrum (DSSS) signal [27], that could be written as

si(t)=
√

2Piai(t)[bI,i(t) cos(2πfct)−bQ,i(t) sin(2πfct)] ,

with Pi being the transmitted (Tx) power over the i-th link,
ai(t) the spreading signal, bj,i(t) the baseband data signal on
the in-phase (j = I) or quadrature (j =Q) component, fc the
center frequency. Notably,

ai(t)=
∑+∞

l=−∞
āi,lpi,Tc(t− lTc), (4)

bj,i(t)=
∑+∞

m=−∞
b̄j,i,mpi,Ts(t−mTs), (5)

where {āi,l} denotes the spreading sequences for the i-th
link and {b̄j,i,m} the binary data sequence for the i-th link
on the I or Q component. Moreover, pi,Tc and pi,Ts are
rectangular pulses with chip duration Tc and symbol duration
Ts. We assume a coherent demodulation, allowing y(t) to be
decomposed into its I and Q components, YI(t) and YQ(t).

Then the next step of our modeling framework is to derive
an explicit equation that represents the transmitted signal
subject to the aforesaid channel imperfections and interference.

B. Explicit analytic model of SINR

Following [28], the output of the correlation receiver
matched to the user signal is given by

Yj(t)=
∑1

i=0
Yj,i(t)+Nj(t), (6)

where Yj,i(t) and Nj(t) are the components of yi(t) and n(t),

Yj,i(t)=αie
χi(t)

2

√
PiTs

2
uj,i, (7)

with uj,i being the I or Q component of the transmitted
complex symbol ui, while χi(t)= ξi(t) + βi(t), where ξi(t) is
the logarithmic residual power control error (PCE), envisaged
in the WirelessHART standard [27], modeled by a zero-mean
Gaussian process with variance σ2

ei and autocovariance

cξi(τ)=σ2
ξie
− 1

2

(
τ
τξi

)2

, (8)

where σξi = (ln 10/10)σei , while τξi is the decorrelation time
within which the PCE is significant [29].

The shadowing correlation is modeled as in [30]: if dci de-
notes the typical decorrelation decay distance and vi indicates
the device speed, then

cβi(τ)=σ2
βie
− 1

2

(
viτ

dci

)2

. (9)

Thus, the SINR (which will be denoted by Γ in logarithmic
scale, and by γ when using the power value, Γ, 10 log10 (γ)

[dB]) conditioned to PCEs and shadowing, and assuming√
u2
Q,i + u2

I,i = 1, is

γ(t) =

√
Y 2
I,0(t)+Y 2

Q,0(t)√
N0Ts

4 +var
{√

Y 2
I,1(t)+Y

2
Q,1(t)

}
=

√
P0eχ0(t)α2

0
N0

4 + 8
3GP1eχ1(t)α2

1

, (10)

where the expectations are taken with respect to carrier phases,
time delays, data symbols but not with respect to random
processes vectors ξ(t) = (ξ0(t), ξ1(t)), β(t) = (β0(t), β1(t)). N0

denotes the noise spectral density, G=WTs is the processing
gain, W is the bandwidth, 1/Ts is the symbol rate.

The following step of our modeling process is finding a
tractable representation of the explicit analytic model of SINR.
To perform that, we can approximate it with another random
process, (e.g. log-normal process) and then apply moment
matching approach to get the signal statistics.

C. Implicit analytic model of SINR

Following [31], we let Γ(t) = L−1/2(t), where due to the
properties of the random prcesses involved, L−1/2(t) is seen as
a weighted sum of randomly correlated log-normal processes.
This is valid also for L(t), which could be expressed as

L(t)=De−χ0(t)+Beχ1(t)−χ0(t), (11)

D=
N0

4α2
0P0

, B=
8P1α

2
1

3GP0α2
0

. (12)

So, we apply the moment matching technique [31] as follows.
Let Z(t) be a Gaussian process with mean ηZ , variance σ2

Z , and
autocovariance cZ(τ), such that L(t)≈ eZ(t). Let E{·} denote
the mathematical expectation. Then

M1 =E{L(t)},E{eZ(t)}=eηZ+ 1
2σ

2
Z ,

M2(τ)=E{L(t)L(t+τ)},E{eZ(t)+Z(t+τ)}
=e2ηZ+σ2

Z+cZ(τ),

M2(0)=e2ηZ+2σ2
Z .

(13)

Solving the equations defining M1, M2(τ) and M2(0) in ηZ ,
σ2
Z and cZ(τ) yields the following expressions:

ηZ =2 ln M1− 1
2 ln M2(0),

σ2
Z =ln M2(0)−2 ln M1,

cZ(τ) = ln
(

M2(τ)
M2

1

)
.

(14)

Since ξi(t) and βi(t) are zero mean independent processes,{
M1 = De

1
2 (σ2

ξ0
+σ2

β0
) + Be

1
2 (σ2

ξ1
+σ2

β1
+σ2

ξ0
+σ2

β0
),

M2(τ) = eσ
2
χ0

+cχ0 (τ)
[
D2+2DBe

1
2σ

2
χ1 +B2eσ

2
χ1

+cχ1 (τ)
]
,
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where cχi(τ)=cξi(τ)+cβi(τ), σ2
χi =σ2

ξi
+σ2

βi
, for i=0, 1.

Given the relation between Z(t) and L(t), few manipulations
bring to

Γ(t)=κZ(t) where κ=− 5

ln 10
, (15)

so that Γ(t) is a Gaussian process with mean, variance and
autocovariance 

ηΓ =κηZ ,

σ2
Γ =κ2σ2

Z ,

cΓ(τ)=κ2cZ(τ).

(16)

In the rest of this paper, we will denote it by Γ(t)∼N
(
ηΓ, σ

2
Γ

)
,

if the relevant values of cΓ(τ) will be given.
The closed-form expression (16) evolves at the symbol

rate and encompasses the stochastic characteristics of the
WirelessHART link for the considered scenario. It allows us
to define some important quality metrics describing the lossy
communication link, which will be expounded in the next
subsection. However, to define these quality metrics formally,
we need to pay attention to the control-related data messages
and not just to individual symbols.

In networks based on IEEE 802.15.4 compatible hardware
the SINR estimation is performed for each received packet
during link quality indicator (LQI) measurement [24, p. 65].
Since OQPSK modulation encodes two bits per symbol, the
number of symbols within a control-related frame is (`F /2),
where `F indicates the number of bits in the frame. There-
fore, the estimated Γ(t) refers to a block of (`F /2) symbols.
WirelessHART-based WNCSs send data at a rate that is
inversely proportional to the update period of the dedicated
Publish data messages [21, p. 248]. Thus, between two control-
related data transmissions the presented link has approximately
`E evolutions which could be expressed as

`E =round

(
2Tu
`FTs

)
. (17)

For `F =208 bits, Tu=0.1 s, and 1/Ts=62.5 kHz we have that
`E =round (60.096)=60. In general, we need to

compute values of cΓ(τ) for τ=k`
E

+1, k∈N,
in order to evaluate the time correlations at the time scale of
the control application.

D. Link quality metrics of the analytic model

Since currently WirelessHART does not provide for imple-
mentation of the forward error correction, even one erroneous
bit leads to a corrupted WirelessHART data packet. According
to the IEEE 802.15.4-2006 standard [24], which provides the
physical layer of WirelessHART, the bit error ratio (BER, Rb)
depends only on the power value γ of SINR [24, p. 268].

Therefore, the packet error rate (PER, Rp) is related to SINR
through BER, where γ ∈ (0,∞), and both Rb(γ) ∈ [0, 0.5],
Rp(γ)∈ [0, 1] are continuous monotonically non-increasing

Rp(γ)=1−(1−Rb(γ))
`F ,

Rb(γ)=
1

30

∑16

i=2
(−1)

i

(
16

i

)
e(20γ 1−i

i ). (18)

An unreliable communication link can be characterized by
the likelihood of the information losses and by the maximum

number of consecutive dropouts [12], which in stochastic
framework have a non-negligible probability of occurrence.
The PER defined on the presented implicit analytic model
of SINR encompasses this information, since the probability
density function fΓ(·) of the SNIR is known, and Rp(·) is a
continuous function defined on the range of Γ: by the law of
the unconscious statistician, the expected value of the PER,
denoted by ηA, can be obtained as

ηA =

∫ +∞

−∞
Rp(10

ζ
10 )fΓ(ζ) dζ, (19)

while its variance, indicated by σ2
A, can be computed as:

σ2
A =

∫ +∞

−∞
R2

p(10
ζ
10 )fΓ(ζ) dζ − η2

A. (20)

In practical applications the PER is considered negligible when
it is smaller than a specified threshold εp, which may be as
small as the machine epsilon. Since Rp(·) is a continuous
monotonically non-increasing function of Γ(t), any value υΓ

of the SINR such that υΓ≥υ
?
Γ

(εp), where

υ?
Γ
(εp),min

υ
Rp(υ)=εp (21)

almost surely has PER equal to zero. The value of υ?
Γ

(εp)

can be easily computed by one of the standard root-finding
algorithms, and the probability of having a non-negligible PER
is given by the value of the cumulative distribution function
FΓ(·) of the Γ(t) in υ?

Γ
(εp). When there is a time correlation,

i.e., when cΓ(k`E +1) 6= 0 for all k ∈ N, the formal definition
of the probability of having a packet error burst of length
`B relies on the notion of the multivariate normal cumulative
distribution function [32]

F
Γ1···Γ̀ B

(υ1),
1√

|Σ|(2π)
`B

∫ υ−ηΓ

−∞
· · ·
∫ υ−ηΓ

−∞
e−0.5z′Σ−1zdz1 · · · dz`B ,

where 1 denotes the column vector of the appropriate length
with all entries being equal to the scalar 1, | · | indicates the
determinant, ′ symbolizes the operation of transposition, while
Σ is a symmetric, positive definite covariance matrix, whose
entry in position (i, j) is the value of cΓ(τ), for τ = (i−j)`E +1,
if i 6= j, and τ = 0 otherwise. We observe that Σ is banded
[32], i.e., it satisfies the condition cΓ(τ) = 0 whenever τ > l

for some l≥0. This special correlation structure of Σ allows
efficient computation [33] of FΓ1···Γ`B

(
υ?

Γ
(εp)1

)
.

Since the probability of a packet error burst is negligible
when it is smaller than a specified threshold εB, the largest
number of consecutive dropouts with a non-negligible proba-
bility of occurrence `?B(εB, εp) can be computed iteratively:

`?B(εB, εp) , max
`B

F
Γ1···Γ̀B

(
υ?

Γ
(εp)1

)
subject to

F
Γ1···Γ̀B

(
υ?

Γ
(εp)1

)
≥εB.

(22)

When l≤ `E, we have that FΓ1···Γ̀ B

(
υ?

Γ
(εp)1

)
=FΓ

(
υ?

Γ
(εp)

)`B,
so it is easy to verify that

`?B(εB, εp)=ceil

 ln(εB)

ln
(

1
2

(
1+erf

(
υ?

Γ
(εp)−ηΓ

σΓ

√
2

)))
, (23)

where ceil(·) and erf(·) are the ceiling and error functions,
respectively. The presented closed form expression (23) of
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`?B(εB, εp) provides a useful lower bound on its true value (22).
In summary, the LQMs characterizing the analytic model

of the WirelessHART link are listed in Table I. They will
be compared with the LQMs of finite-state abstractions of
the analytic model in order to validate these abstractions and
provide guidelines on the choice of parameters defining the
aforementioned abstractions.

TABLE I
ANALYTIC LQMS.

Link quality metric Notation
The packet error probability (PEP) ηA

The PER’s variance σ2
A

The maximum number of consecutive dropouts `?B(εB, εp)

E. Finite-state Markov model

The analytic model of a communication link presented in
the previous subsections is defined on a continuous state-space,
where the SINR is defined on the set of all ordinary real
numbers, namely Γ(t) ∈ (−∞,+∞). Nevertheless, there are
several application scenarios (e.g. decoding in channels with
memory, adaptive transmission, as well as modeling of lossy
communication link’s error bursts) where using a finite number
of channel states can be more advantageous [17].

The coarsest abstraction of the analytic model collapses the
infinite-dimensional state-space into one state with a represen-
tative PEP (given by ηA), which may be seen as a probability of
the packet loss event in the Bernoulli distribution. If random
variables are jointly normal and uncorrelated, then they are
independent: if the autocovariance of the Gaussian process
representing the evolution of Γ(t) has cΓ(τ)≈0 for all τ >`E ,
then the i.i.d. Bernoulli model introduces no conservatism.

In a more accurate finite-state Markov channel abstraction
the range of SINR is divided into several consecutive regions,
to each of which is associated a certain representative PEP. A
region i of the values of SINR is mapped into a state si of the
related Markov chain and is delimited by two thresholds ζi and
ζi+1 belonging to the set of extended reals. The steady state
probability pi of a state si is the probability that the SINR is
between thresholds of the region, which is given by

pi=

∫ ζi+1

ζi

fΓ(ζ)dζ, (24)

while the PEP associated to the same state is given by the
expected value of the PER within the respective region, i.e.

η
(i)
M =

1

pi

∫ ζi+1

ζi

Rp(10
ζ
10 )fΓ(ζ) dζ. (25)

The TPM of the Markov channel may be obtained from the
level crossing rate (LCR) analysis [17]. This analysis considers
the number of times per second the SINR crosses each
threshold (with the obvious exception of the two thresholds
having the values equal to ±∞) in a downward direction,
divided by the average number of symbols per second the
SINR falls in the interval associated to state of interest (i.e.
(pi/Ts) = 62500pi for the WirelessHART, [24, p. 49]). In
particular, the well known expressions for the LCR analysis

of a Gaussian process [34] may be used as follows. Let Rc

denote the rate of crossing a certain threshold. Then

Rc(ζi)=
1

2π

√
c̈Γ(0)

cΓ(0)
e
− (ζi−ηΓ)2

2cΓ(0) , with c̈Γ(0),
d2cΓ(τ)

dτ2

∣∣∣
τ=0

.

We remark that since cΓ(τ) is examined only for τ=0, the LCR
analysis may introduce non-negligible approximation errors
and should be used with care. When evolving at the symbol
rate, the transition probabilities between the Markov channel’s
states are denoted by Πi .j , i, j≤N . In the LCR approach they
are approximated as{

Πi .i+1≈ Rc(ζi+1)Ts
pi

∀ 1≤ i≤N−1,

Πi .i−1≈ Rc(ζi)Ts
pi

, ∀ 2≤ i≤N,
(26)

where N is the number of channel’s states. Such an approxi-
mation is valid under assumptions that the LCR at the chosen
thresholds is much smaller than (Pi/Ts) and that the values
of SINR during symbol duration time Ts either stay in the
same region i or transit to their immediate neighboring regions
i±1. When satisfied, the stated assumptions allow to derive
the remaining nonzero transition probabilities as

Π1 .1 =1−Π1 .2

ΠN .N =1−ΠN .N−1,

Πi .i=1−Πi .i−1−Πi .i+1 for 2≤ i≤N−1.

(27)

When the aforementioned assumptions are not satisfied, the
channel state transition probabilities should be derived from
integrating the joint PDF of the SINR over two consecutive
symbol time intervals and over the desired regions [17] as

Πi .j=

∫ ζi+1

ζi

∫ ζj+1

ζj
fΓ(zt−1, zt) dzt−1dzt

pi
, (28)

where, from the definition of the autocovariance, the two-
dimensional PDF of the Gaussian process Γ(t) is

fΓ(zt−1, zt) =
1

2π
√
σ4

Γ − c2Γ(1)
·

· e
− 1

2

σ2
Γ(zt−1−ηΓ)2+σ2

Γ(zt−ηΓ)2−2cΓ(1)(zt−1−ηΓ)(zt−ηΓ)
σ4

Γ
−c2

Γ
(1) .

Thus, thanks to the closed-form expression of fΓ(zt−1, zt), any
transition probability Πi .j can be computed numerically. The
associated TPM is denoted by Π. It is computed by taking
into account the symbol rate, and it is defined as a stochastic
N ×N matrix with entries Πi .j .

Since the values of Πi .j depend heavily on the choice of
the thresholds delimiting the regions of SINR associated to
each state of the Markov chain, in the literature on finite-
state Markov channel abstractions there are different methods
of partitioning the range of SINR, see e.g. [17], [35]. In this
paper we consider two well known approaches for doing such
methods of partitioning. The first one consists in choosing
υ?

Γ
(εp), that can be computed via (21), as the only threshold,

obtaining a Markov channel with two modes, namely “good”
and “bad”. When the channel is in “good” mode of operation,
the transmissions occur without any errors, i.e. η(g)

M ≈0 (since
its exact value is by construction ≤ εB), while in “bad”
operational mode the channel has a probability η

(b)
M > 0 of
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presenting a failure. This model is known as Gilbert channel,
see e.g. [17], [10]. In the second approach of partitioning the
range of SINR, the thresholds are selected in such a way
that the steady state probabilities of being in any state are
equal [17], [35], i.e. ∀i, j≤N , pi=pj =(1/N).

As in case of analytic model of the WirelessHART link, also
its finite-state abstraction should evolve at the timescale of the
control-related data transmissions, and not at the timescale of
individual symbols. Fortunately, the transition probabilities of
channel’s states in between two control-related data transmis-
sions can be computed simply as `E -th power of Π, since the
considered Markov channel is time-homogeneous and has a
finite number of states. We define this new TPM as

[pij ]
N
i,j=1,P=Π`

E . (29)
The values of pij may also be computed directly by integrating
the joint PDF of the SNIR over two consecutive packet
transmissions and over the desired regions, so we could write

pij=

∫ ζi+1

ζi

∫ ζj+1

ζj
fΓ

(
zt−`

E
−1, zt

)
dzt−`

E
−1dzt

pi
. (30)

In summary, the N-state Markov channel abstraction of the
wireless link is characterized by the parameters illustrated in
Table II, knowing that the first and last thresholds are by
construction ζ1 =−∞ and ζN+1 =+∞.

TABLE II
CHARACTERIZATION OF AN N -STATE MARKOV CHANNEL ABSTRACTION.

Parameter Notation
The steady state probability pi

The associated PEP η
(i)
M

The thresholds ζi
TPM P

These parameters are used to define the related Markovian
link quality metrics: the long-run mean PEP of the Markov
channel, ηM, is by construction equal to ηA since

ηM =
∑N

i=1
η

(i)
M pi=

∑N

i=1

∫ ζi+1

ζi

Rp(10
ζ
10 )fΓ(ζ) dζ, (31)

while its long-run variance, σ2
M, is given by

σ2
M =

∑N

i=1

(
η

(i)
M

)2
pi−η2

M. (32)

To find the maximal number of consecutive packet dropouts
with a non-negligible probability of occurrence, denoted by
`?
D

, we rely on the notion of a sojourn time in a given subset
of states of a discrete-time Markov process (see [36]). It is
defined on a proper subset of all N states of the Markov
channel, indicated by S0, where the packets have a non-
negligible error probability, i.e. S0,

{
si : η

(i)
M ≥εp

}
. We denote

by S1 the complementary subset of S0. S1 should contain at
least one element. If all the states of the Markov channel have
non-negligible PEP, then the analysis of the sojourn time is
possible only after splitting the N-th state into two, where the
new last state, denoted by sN+1, has η

(N+1)
M < εB. Since `?

D

is related to the worst-case analysis, the initial state of the
channel is considered to be a state in S0 with the largest value
of the PEP. Therefore, by construction the initial probability
distribution vector v0 has 1 in correspondence of s1, and 0

everywhere else. The partition {S0, S1} of the state space of
the Markov channel induces a decomposition of its TPM P

into four submatrices:

P=

[
P

00
P

01

P10 P11

]
, with PAB , [pij ]i,j:i∈SA,j∈SB

, (33)

where A,B∈{0, 1}. Accordingly, the probability of having `D
consecutive dropouts during k-th visit of partition P00 is

∆(`
D
, k)=v0

(
(I−P

00
)
−1

P
01

(I−P
11

)
−1

P
10

)k−1

·

· P`
D
−1

00
(I−P

00
) 1,

(34)

where I is the identity matrix of the appropriate size. Then,
`?
D

is obtained as the solution of the optimization problem
max(`

D
), subject to ∆(`

D
, k)≥εB, k≥0. (35)

In summary, the Markovian LQMs listed in Table III can be
compared with the LQMs characterizing the analytic model
of the radio link (see Table I), permitting us to evaluate
and validate this finite-state model of the WirelessHART in
straightforward manner. In the next sections we will show on a
case study from the automatic control domain how the quality
metrics permit to find a high fidelity finite-state abstraction
of the analytic channel useful for solving networked control
problems.

TABLE III
MARKOVIAN LQMS.

Link quality metric Notation
The long-run mean PEP ηM

The long-run variance of PER σ2
M

The maximal number of consecutive dropouts `?
D

III. OPTIMAL CONTROL OVER A WIRELESSHART LINK

To show the importance of the accurate Markov channel
model for the WNCSs, we examine the inverted pendulum
(on a cart) described in [37], which is controlled remotely
over a WirelessHART link presented in the previous section.
We model it as a linear stochastic system with intermittent
control packets due to the lossy communication channel [14]:

xk+1 =Axk+Buak+wk with uak=νku
c
k, (36)

where, xk is a system state, uak is the control input to the
actuator, A and B are state and input matrices of appropriate
size, respectively, uck is the desired control input computed by
the controller, wk is Gaussian white process noise (with zero
mean and covariance matrix Σw) assumed to be independent
from the initial state x0 and from the stochastic variable νk,
which models the packet loss between the controller and the
actuator: if the packet is correctly delivered then uak = uck,
otherwise if it is lost then the actuator does nothing, i.e., uak=0.
We assume full state observation with no measurement noise,
and no observation packet loss, so the optimal control must
necessarily be a static state feedback and no filter is necessary.

In such a setting we compare the performance of two
state feedback controllers, both designed to minimize the cost
function, which can be described by

J∗= lim sup
t→∞

1

t
E
[∑t

k=0
(x∗kQxk+ua∗k Ru

a
k)
]
, (37)
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where Q � 0 and R � 0 are the state and control weighting
matrices, respectively.

The first state-feedback controller is derived in [14], treating
νk as i.i.d. Bernoulli random variables. The obtained state-
independent controller and the value of the related perfor-
mance index will be denoted respectively as Kb, Jb? .

The second controller is the optimal linear quadratic reg-
ulator for a MJLS in the presence of one time-step delayed
mode observations [18]. It considers νk as a random variable
governed by the Markov channel, where the probability of
the successful packet delivery is conditioned to the state of
the communication link, i.e., Pr(νk=1 | θk=si)= ν̂i, while the
probability of the packet loss is Pr(νk=0 | θk=si)=1−ν̂i. The
operational modes are observed by controller via ACKs that
are available only after the current decision on the controller
gain to apply has been made and sent through the channel,
since the actual success of the transmission is not known in
advance. We assume that ACKs, and also the communication
channel states (measured through SINR), are not received at
the controller instantaneously, but become available before the
next decision on the control to apply. This means that the state-
space representation of the MJLS in closed-loop becomes

xk+1 =
(
A+νθkBK

c
θk−1

)
xk+wk (38)

where Kc
θk−1

is a mode-dependent state-feedback controller,
computed as in [18]. The value of the related performance
index will be denoted as Jc? .

To be of any practical use, the system should remain always
stable in closed-loop. To check whether the controlled system
is actually stable, we adopt the techniques from the theory
of discrete-time MJLSs [38]. In particular, we rely on [19],
which shows that a MJLS with one time-step delayed mode
observations is mean square stable if and only if the spectral
radius ρ of the characteristic matrix Λ is smaller than 1, being

Λ=

 N

	

j=1

(
N⊕
i=1

pij

)′⊗( N

	

j=1

(A⊗A)

)
+

 N

	

j=1

(
N⊕
i=1

ν̂ipij

)′⊗(
N

	

j=1

((
(BKj)⊗(BKj)

)
+
(
(BKj)⊗A

)
+
(
A⊗(BKj)

)))
,

where, as before, pij is the probability of transition between the
Markov channel’s states, ⊗ indicates the Kronecker product,
⊕ the direct sum, and 	 the horizontal concatenation of two
matrices with the same number of rows.

In Section IV-C we will check the stability of the closed-
loop system through the computation of ρ(Λ), and verify it
via a statistical analysis.

IV. NUMERICAL CASE STUDY

The parameters of our inverted pendulum shown in Fig. 3
are summarized in Table IV. The state variables are the cart
position coordinate x and pendulum’s angle from vertical φ,
together with respective first derivatives. We are interested in
designing a controller that stabilizes the pendulum in up-right
position, corresponding to unstable equilibrium point x?=0 m,
φ?=0 rad, so the system state is defined by x=

[
δx, δẋ, δφ, δφ̇

]′,

Fig. 3. The inverted pendulum on a cart.

TABLE IV
THE PARAMETERS OF THE INVERTED PENDULUM ON A CART.

Parameter Notation
The cart mass 0.5 kg

The pendulum mass 0.2 kg
The inertia about the pendulum mass center 0.006 kg

The distance from the pivot to the mass center 0.3 m
The friction coefficient of the cart 0.1 N·s /m

where δx(t) = x(t)−x?, δφ(t) = φ(t)−φ?. This determines the
frame length of the control-related messages: `F = 208 bits.
It is assumed that the initial state x0 equals

[
0, 0, π

10
, 0
]′. The

process noise is characterized by the covariance matrix Σw=

vv′, with v= [0.030, 0.100, 0.010, 0.150]′. To prioritize the goal
of maintaining the inverted pendulum in the upright position,
we use the following weighting matrices for all the control
schemes being compared: Q=⊕(1, 0.1, 100, 0.1) and R=1, so
that the weight associated to δφ(t) is much larger than all other
weights. The inverted pendulum on a cart moves in a direction
orthogonal to both its remote controller and the transmitter that
creates interference. We set the noise figure Fn of the receiver
to 23.8 dB (so that its sensitivity is just above −85 dBm as
required by the standard [21]). Thus, the noise spectral density
N0 = kBT0Fn, where kB is the Boltzmann’s constant and T0

is standard noise temperature. The values of other channel
parameters used in this case study are summarized in Table V,
where ε1 denotes the machine epsilon, and εp is the probability
of one data packet loss in a century of continuous operation
with the sampling time of Tu (measured in seconds).

A. Case 1

The first case describes the scenario, where the minimum
update period of the WirelessHART standard is considered for
the control application, i.e., Tu = 0.1 s. The distance between
the transmitter-receiver pair of interest, d0, and the distance
between the interfering Tx and the reference user, d1, have
the values shown in Table V. According to these values, we
have `E =60, and the implicit analytic model of the channel is
characterized by the Gaussian process described in Table VI.
We underline that cΓ

1
(61) = 0. This means that at the packet

level two consecutive data transmissions are independent, so
the i.i.d. Bernoulli distribution is appropriate to model packet
losses. The analytic LQMs are also outlined in Table VI.

To show the usefulness of the derived link quality metrics,
we first construct a three-state Markov model with equiprob-
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TABLE V
PARAMETER VALUES FOR CASE STUDY.

Parameter Notation Value Unit ReferenceCase 1 Case 2 Case 3

Symbol rate 1/Ts 62.5 ksymb/s [27]
Chip rate 1/Tc 2 Mchip/s [27]

Channel bandwidth W 2 MHz [24]
Users speed v0, v1 5.37 m/s Pendulum

Shadowing decay
dist.

dc0 , dc1 9 m [23]

Shadowing std. dev. σβ0
, σβ1 2 dB [39]

PCE std. dev. σe0 , σe1 1.5 dB [31]
PCE decorr. time τξ0 , τξ1 1.52 · 10−3 s [31]

Ref. user Tx power P0 0 dBm [21]
Interf. Tx power P1 10 dBm [21]

Dist. ref. Tx-Rx pair d0 6 6 10 m Indoor:
1–10 m

[23]
Dist. interf. Tx-Rx

pair d1 10 10 4 m

Publish data message
update period Tu 100 5 5 ms [21]

Negligible PER
threshold

εp 1
(1/Tu)·3600·24·36525

scalar Design
choiceNegligible packet

error burst threshold
εB 100ε1 scalar

TABLE VI
RESULTS OF CASE STUDY.

Parameter Case 1 Case 2 Case 3

Gaussian
process

µ 6.331 6.331 -9.061
σ2 42.504 42.504 42.505
`E 60 3 3
cΓ(1) 19.825 19.825 19.826

cΓ(`E+1) 0 1.373 1.373

Analytic
LQMs

ηA 0.113 0.113 0.871
σ2

A 0.087 0.087 0.098
`?B(εB, εp) 36 40 2270

Gilbert
channel

abstraction

pi (0.413, 0.587) (0.437, 0.563) (0.986, 0.014)

η
(i)
M (0.274, 0) (0.258, 0) (0.883, 0)

ζ2=υ?Γ(εp) 4.889 5.302 5.302

P

[
0.413 0.587
0.413 0.587

] [
0.454 0.546
0.4246 0.575

] [
0.986 0.014
0.9846 0.015

]
Markovian

LQMs

ηM 0.113 0.113 0.871
σ2

M 0.018 0.016 0.011
`?D 36 40 2011

able partitioning of the range of SINR, as introduced in
Section II-E. Specifically, the range of SINR is partitioned
in such a way that the steady state probabilities of being in
any state are equal. The related TPM is derived from either
LCR analysis via (26) and (27), or by integrating fΓ1(zt−1, zt).
We have for both approaches that

(pi)
3
i=1 =(1/3, 1/3, 1/3) ,(

ζi
)4
i=1

=(−∞, 3.522, 9.139,∞) ,(
η

(i)
M

)3
i=1

=
(
0.339, 4.4 · 10−9, 0

)
.

(39)

Therefore, from (31) and (32) we get respectively ηM =0.113

and σ2
M =0.026. TPMs describing the evolution of the Markov

channel at the symbol rate, denoted by Πi, and TPMs of the
Markov channel evolving at the packet rate, Pi, (with i = L

when the transition probabilities are obtained from the LCR
analysis, and i=I when the integration of fΓ1(zt−1, zt) is used)

are

ΠL =

0.997 0.003 0
0.003 0.994 0.003

0 0.003 0.997

, ΠI =

 0.532 0.315 0.153
0.3146 0.371 0.3146
0.153 0.315 0.532

;
PL =

0.846 0.141 0.013
0.141 0.717 0.141
0.013 0.141 0.846

, PI =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

.
Importantly, the values of PI show that at the packet level

two consecutive data transmissions are independent, while the
structure of PL erroneously indicates the correlation between
the channel states. Fortunately, the difference in the maximal
number of consecutive dropouts helps to discover this mistake,
since (for the same values of εB, εp) we have that `?DL

=441,
`?DI

=77, while from the application of either (22), or (23), we
have that `?B1

= 36. This discrepancy in the values of `?D and
`?B also indicates that the simple equiprobable partitioning of
the range of SINR is not the best choice, since it does not
consider the value of υ?

Γ1
(εp) in deriving the thresholds ζi.

Consequently, we consider also a Gilbert model of the
WirelessHART link. Henceforth we will use only the inte-
gration of the joint PDF of the SINR over two consecutive
packet transmissions to compute exact values of TPMs P

directly, via (30). The characteristics of the obtained Gilbert
channel abstraction of the radio link and its LQMs are reported
in Table VI. Notably, we have that `?D1

= 36, and also
`?B1

= `?B(εB1 , εp) = 36. Therefore, as expected, the Gilbert
channel is well suited for studying the maximal number of
consecutive dropouts.

B. Case 2

The minimum update period Tu=0.1 s of the WirelessHART
standard is too slow for several control applications and it
makes the wireless link uncorrelated at the packet level. Thus,
in view of the continuous development of mobile network
technologies that support much higher update rates, we con-
sider Tu=0.005 s, i.e. Case 2 in Table V. The characteristics of
the implicit analytic model of the radio link and of its finite-
state abstraction via Gilbert model are reported in Table VI.
We notice that the higher update rate does not change the
values of ηΓ, σ2

Γ, and cΓ(τ), which are computed via (16).
Accordingly, also the values of ηA and σ2

A, that are obtained
respectively through (19) and (20), remain the same as before.
However, with `E being equal to 3, we have cΓ1

(4) = 1.373:
there is a correlation between the control-related transmis-
sions. Since a smaller value of εp is used in this case, then
υ?

Γ2
(εp) = 5.302. Therefore, the lower bound of `?

B2
computed

via (23) becomes 39 while its exact value obtained from (22)
is 40. The associated Gilbert channel, with characteristics and
LQMs shown in Table VI, is still able to closely track the
behavior of the analytic model, which is evident from the
comparison of the respective LQMs.

C. Case 3

Finally, this last case shows the real utility of the accurate
finite-state Markov channel models in networked control appli-
cations. This scenario describes the situation with a sustained
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Fig. 4. Traces of the systems state that are generated under the Markovian
control law over the analytic WirelessHART channel.

jamming activity. The analytic and Gilbert channel abstraction
have the values depicted in Table VI, where `?

B3
= 2270 is

computed via (22), while its lower bound from (23) is 2263.
The discrepancy with `?

D3
= 2011 is due to the numerical

precision of the operations involved in computing (34).
We consider the networked control application implemented

over this link, and analyze the performance of both the
optimal linear quadratic regulation with Bernoulli and Gilbert
abstractions of the analytic wireless channel. The state space
representation (38) of the controlled system linearized about
the unstable equilibrium point and discretized with sampling
period Tu=0.005 s is defined by

A=


1 0.005 0 0
0 0.999 0.013 0
0 0 1 0.005
0 −0.002 0.156 1

, B=


0

0.009
0

0.023

.
The matrix A is unstable, since its eigenvalues are eig(A) =

(1.028, 1.000, 0.999, 0.972). It is easy to verify that R�0, Q�0,
and the pairs (A,B) and (A,Q) are controllable, so the closed-
loop system is asymptotically stable, when νk=1 for all k. The
critical probability νc for the networked control over Bernulli
channel [14] for this system is 0.053, so that maximal length of
the fading sequence with the probability of occurrence larger
than εB is 573, i.e. it is much smaller then 2270. Still, since ν̂=

1−ηA3>νc, we may try to apply the controller Kb as in [14].
We obtain Kb=[0.024,−3.252, 255.665, 45.958], Jb?=1.25 · 106.
By checking the stability of this controller when applied to a
Gilbert channel case, we find out that ρ

(
Λb
)

=1.000065>1, so
the system is unstable. If we exploit the information available
from the Gilbert channel to construct a MJLS with one time-
step delayed mode observations presented at the beginning of
this section, we obtain Kc

1 = [−0.754,−3.668, 114.502, 20.698],
Kc

2 = [−0.764,−3.713, 115.912, 20.953], so that Jc? = 451.124.
This controller stabilizes the system, since ρ(Λc)=0.997<1.

To validate the presented results, we have simulated the
behavior of the inverted pendulum on a cart, with a remote
controller implementing either the Bernoulli, or Markovian
control law, and sending the data over the analytic Wire-

Fig. 5. Traces of the systems state that are generated under the Bernoulli
control law over the same analytic WirelessHART channel.

lessHART channel. Specifically, we randomly generated 10000
admissible evolutions (each one with 4000 samples accounting
for 20s of operation) of the analytic channel, and used them for
both control strategies. Since both Bernoulli and Markovian
controllers do not consider any constraints on the system
states or control inputs, all the physics-related constraints were
neglected in our simulations. Figs. 4 and 5 depict statistical
results of our simulations: it is evident that Fig. 4 shows a
stable system behavior of the inverted pendulum on a cart
when it is governed by the remote Markovian controller,
while the behavior of the pendulum controlled remotely by a
Bernoulli strategy, that is reported in Fig. 5, is clearly unstable,
as it was expected from our analysis of stability conditions
based on the spectral radius of the characteristic matrices.

V. CONCLUSIONS

In this paper, we have presented a mathematical frame-
work for deriving an accurate Markov channel model of a
WirelessHART radio link affected by path loss, shadowing,
power residual control and persistent interference. We also
introduced link quality metrics that permit us to asses how
good a finite-state representation of the radio link is. We
have shown on a numerical case study how these metrics are
essential for an easy discovering of some pitfalls related to
both the choice of the method of partitioning of the range
of signal-to-interference-plus-noise ratio and the computation
of transition probabilities between operational modes of the
Markov channel. We have also demonstrated in a formal
setting that an accurate Markov model of the WirelessHART
link allows us to design a controller that guarantees stability
and improves control performance of the closed-loop system,
where other approaches based on a simplified channel model
fail. Further work is being done to account for a more general
communication scenario and to compare different SINR par-
titioning methods for improving the wireless channel model.
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