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Optimal output-feedback control over Markov
wireless communication channels

Anastasia Impicciatore, Yuriy Zacchia Lun, Pierdomenico Pepe, and Alessandro D’Innocenzo

Abstract— The communication links connecting com-
ponents of wireless control systems may be affected by
packet losses due to time-varying fading and interfer-
ence. We consider a wireless control network (WCN) with
double-sided packet-losses: on the sensor–controller link
(sensing link) and controller–actuator link (actuation link).
We model the sensing and actuation links as finite-state
Markov channels (FSMCs). One time-step delay affects the
actuation link mode observation, while the sensing link
mode observation is not affected by any delay. In this paper,
we solve, as our main contribution, the optimal output-
feedback control problem in this FSMC setting (under a
TCP-like communication scheme) using two different state
estimation techniques: Luenberger observer and current
estimator, comparing the two methodologies and deriving
a separation principle for both the cases. We also derive
detectability conditions guaranteeing the existence of an
optimal observer, either Luenberger or current.

Index Terms— Wireless control networks, finite-state
Markov channels, separation principle.

I. INTRODUCTION

Wireless control networks (WCNs) consist of computational
units, actuators, and sensors connected via wireless com-
munication links that may be affected by packet losses. In
wireless control systems literature, the packet dropouts have
been modeled either as deterministic (in terms of time averages
or worst case bounds on the number of consecutive packet
losses, see, e.g., [1]–[3]) or stochastic phenomena. In the
stochastic framework, many works in the literature assume
memoryless packet drops, and thus dropouts are realizations
of a Bernoulli process (see [4]–[7]). Other works consider
more general correlated (bursty) packet losses and use a
transition probability matrix (TPM) of a finite-state stationary
Markov chain (see, e.g., [8] and references therein) to describe
the stochastic process governing packet dropouts (see [4],
[9], [10]). In these works, WCNs with missing packets are
modeled via time-homogeneous Markov jump linear systems
(MJLSs, [11]). Double-sided packet losses have been already
investigated for instance in [3], [12], with arbitrary packet
loss process [3], or Markovian [12]. These works summarize
the packet losses on both links. The significant difficulty of
this setting arises from a combined effect of two link packet
losses possibly resulting in long periods in which the controller
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and actuator cannot simultaneously receive new data (see also
Remark 1). However, a simple Markov chain model for packet
losses on wireless channels used in WCNs literature is not
exhaustive since the occurrence of packet losses also depends
on the operational mode of the communication channel [8].
The finite-state stationary Markov channel (FSMC) model
approximates the channel mode transitions through a Markov
chain and incorporates a specific packet error distribution
information into each mode. FSMC is an essential model
because wireless communication system designers tradition-
ally use this mathematical abstraction of the wireless chan-
nel for modeling error bursts in fading channels to analyze
and improve performance measures in the physical or media
access control layers. Moreover, several receivers’ channel
state estimation and decoding algorithms rely upon FSMC
models [8]. Bursts of packet losses cannot be modeled by
Bernoulli processes, which is the main limit of the output-
feedback control (OFC) strategy based on Bernoulli channel.
Indeed, the Bernoullian model is less accurate than the FSMC
model, and thus bursts of packet losses may cause unstable
behavior without the possibility of recovery, as illustrated in
Section VIII. Thus, the existing stabilizability and detectability
notions [4] are not suitable for the general FSMC scenario
(see Remark 14). This work overcomes this limitation by
solving the OFC problem over FSMCs and providing novel
stabilizability and detectability conditions. The investigated in-
frastructure relies on a TCP-like architecture [4], implying that
the communication between the controller and the actuators is
characterized by acknowledgement (ack) messages. This paper
generalizes the results in [4] to the FSMC setting also proving
that the fundamental separation principle still remains valid
when ack messages deliver the state of the channel and out-
come of related transmission. Ack messages are crucial here
because without them the separation between estimation and
control is impossible even in Bernoullian setting. Concerning
the transmission on the actuation link (AL), the controller is
the transmitter: specifically, the transmitter cannot know the
outcome of the transmission before sending the message. This
is the reason why the controller receives the ack message, as
well as the current mode of the channel only after a time-
step delay [13], while this delay does not affect the sensing
link (SL). In modern communication systems the channel
state estimation is always performed through the receiver.
Therefore, on the SL, the controller (i.e., the receiver) is able
to know the outcome of the transmission and the Markov mode
of the channel. The OFC for MJLSs has been investigated in
[11] and [14], with the same Markov chain driving both the
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dynamics of the plant and the one of the observer without
any delay in the channel mode observation. Optimal linear
quadratic regulation [15] with one time-step delay on AL mode
has been investigated in [10]. In [16], the Kalman filter (KF)
is adopted for a single simplified Gilbert channel modeled by
a Markov chain with two states. This result cannot be applied
to general Markov channel scenarios that require 2N modes
with N>2: N channel states result, e.g., from the signal-
to-interference-plus-noise-ratio (SINR) partitioning, and each
state is associated with a binary symmetric channel, see [8].
Thus, 2N modes derive from the general Markov channel
mathematical model. Other estimation techniques are H2 and
H∞ estimation: in [9], sub-optimal filters are obtained for the
case of cluster availability of the operational modes. It is well
known that for the case in which the information on the output
of the system and on the Markov chain are available at each
time-step, the best linear estimator of the state is the KF (see
[16] and [11, Remark 5.2]). An offline computation of the KF
is inadvisable [17], as discussed more in detail in Section IV
(Remark 9). On the other hand, an online computation of
the KF requires a significant computational burden. For this
reason, we consider a different class of estimators, for which
we can pre-compute the filtering gains offline. We present
two infinite horizon (IH) minimum mean square Markov jump
filters [11, Ch.5.3]: the first one with a Luenberger observer
(LO) and the second one using the current estimator (CE) [18,
Ch. 8.2.4]. These estimators use different communication and
computation timing sequences and offer different performance
levels (see Section IV).

Preliminary versions: Preliminary parts of this work have
been presented at the 58th IEEE Conference on Decision
and Control [13] and at the 2021 American Control Confer-
ence [19]. Specifically, [13] has introduced the controllability
notion over one step delayed AL mode observation, while
[19] concerns the OFC with double-sided packet losses and
detectability notions for the LO. The improvement with respect
to [13] is the double-sided packet losses, while the novelty
with respect to [19] is the introduction of the CE together
with a comparison between the two methodologies. The CE
provides better performance but it requires more restrictive
constraints to be satisfied. Different computation timing se-
quences are used by the two estimators: the one concerning
the CE presents more restrictive physical constraints (see
Remark 13). The theoretical existence of these two estimators
is a problem addressed using different detectability notions
that have been introduced for the FSMC scenario and that
are presented in this work with the aim of finding suitable
conditions guaranteeing the existence of an observer (either
Luenberger or current). Particularly, conditions guaranteeing
the weakest detectability are necessary and sufficient, while
requirements ensuring the strongest detectability are only
sufficient. Moreover, we present the detailed proofs of the
separation principle for LO and CE. Finally, we report a more
general case study with respect to the one in [19], providing
several propagation environments showing in which cases it is
possible to conclude the existence of one of the two observers.

Paper contribution: The paper contributions are listed here.
(i) Firstly, the FSMC is introduced into wireless network

control framework. The FSMC is widely used for analysis
and design of telecommunication systems and allows for
accurate modeling of errors and bursts of packet losses.

(ii) The communication timing, as well as computation and
transmission delays are explicitly considered. This leads
to two different estimation strategies: the LO and the CE,
each one with its feasibility conditions.

(iii) The separation principle validity is proved for both the
considered estimators in the general FSMC setting.

(iv) Four different detectability notions (presented from the
weakest to the strongest one, see Remark 22) are intro-
duced with the aim of providing a suitable theoretical
basis for the formal description of the filtering problems.
The aforementioned detectability notions are instrumental
for the guarantees of the separation principle for the
general FSMC scenario (see Remark 14).

(v) The presented results are illustrated in a case study
concerning an inverted pendulum on a cart described in
Section VIII.

Paper organization: The paper is organized as follows.
Section II presents the wireless control network scenario and
the information flow on AL and SL, respectively. Section III
describes the optimal OFC problem in our setting. Estimation
techniques are described and compared in Section IV and the
corresponding observer stability analysis is provided in Sec-
tion V (with the solutions of the filtering CAREs). Section VI
states the separation principle derived for both the LO and
the CE. Section VII presents the mode-independent output-
feedback controller with suitable detectability conditions from
the weakest to the strongest ones. A numerical case study
is shown in Section VIII and some concluding remarks are
reported in Section IX. Proofs of Lemmas and Theorems are
reported in the appendix.

Notation and preliminaries: In the following, N denotes the
set of natural numbers corresponding to the non-negative
integers, R denotes the set of reals, while F indicates the
set of either real or complex numbers. The absolute value
of a number is denoted by | · |. We recall that every finite-
dimensional normed space over F is a Banach space [20] and
denote the Banach space of all bounded linear operators of
Banach space X into Banach space Y, by B(X,Y). We set
B(X,X)≜B(X). On denotes the vector containing all zeros of
length n. In indicates the identity matrix of size n, while On

represents the matrix of zeros of size n× n. The transposition
is denoted by the apostrophe, the complex conjugation by an
overbar, the conjugate transposition by superscript ∗. Fn×n

∗
and Fn×n

+ represent the sets of Hermitian and positive semi-
definite matrices, respectively. For any positive integers C, r, n,
and m, we define the following sets: HCr,n is the set of
all K = [Km]Cm=1, Km in Fr×n, HCn,∗ is the set of all
K = [Km]Cm=1, Km in Fn×n

∗ , and HCn,+ the set of all K in
HCn,∗, with Km ∈ Fn×n

+ . We set HCn=HCn,n. We denote by
ρ(·) the spectral radius of a square matrix (or a bounded linear
operator), i.e., the largest absolute value of its eigenvalues,
and by ∥·∥ either any vector norm or any matrix norm. We
denote by ⊗ the Kronecker product defined in the usual way,
see, e.g., [21], and ⊕ the direct sum. Notably, the direct
sum of a sequence of square matrices (Φi)

C
i=1 produces a
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block diagonal matrix having its elements, Φi, on the main
diagonal blocks. Then, tr (·) indicates the trace of a square
matrix. For two Hermitian matrices of the same dimensions,
Φ1 and Φ2 , Φ1 ⪰Φ2 (respectively Φ1 ≻Φ2 ) means that Φ1−Φ2 is
positive semi-definite (respectively positive definite). Finally,
E(·) stands for the mathematical expectation of the underlying
scalar-valued random variable, and R(·) indicates the real part
of the elements of a complex matrix.
Through this article we will extensively use the acronyms
provided in the following: MS stands for mean-square, MSS
stands for MS stable or MS stability, whose formal definition
is provided in Section II. Moreover, MSD stands for MS de-
tectability or MS detectable. The formal definition is provided
in Section II.

II. PROBLEM FORMULATION

Consider the remote architecture depicted in Fig. 1. The
discrete-time equivalent system is G :{

xk+1 = Axk +Buc
k +Gwk,

ysk = Lxk +Hwk,
(1)

where the system state xk∈Fnx and the system output
ysk ∈ Fny , k ∈ N, are obtained through an Analog to Digital
Converter (A/D block in Fig. 1) with sampling period T .
For k ∈ N, wk ∈ Rnw is a sequence of i.i.d. Gaussian random
variables (RVs) with zero mean. A, B, G, L, and H are
system matrices of appropriate sizes. As in [4], we consider
an unstable system state matrix A since otherwise a stabi-
lizing output-feedback control would not be required. G is
controlled remotely by a digital output-feedback controller,
which receives the measurements ysk on the wireless SL and
sends the control inputs over the wireless AL. The received
digital control law uck ∈ Fnu is converted to an analog signal
by a Digital to Analog Converter (D/A block in Fig. 1) based
for instance on Zero-Order Hold (ZOH), so that the analog
control input can be applied to the continuous-time process.

Remark 1: Fig. 1 reports the scheme of a WCN infrastruc-
ture with possible packet losses occurrence on both the SL
and AL. The main challenge of this scenario arises from a
combined effect of two link packet losses possibly resulting
in long periods in which the controller and actuator cannot
simultaneously receive new data. The scheme is a TCP-
like communication [4] based on ack messages. Specifically,
the controller receives the ack of the transmission on the
connection actuators-controller (see Fig. 1). Packet losses over
this connection are negligible since the probability of a packet
loss for ack messages is very small in practical applications.

A. WIRELESS LINK
This section describes single-hop wireless communication
links modeled by FSMCs. The sequence {νk}k∈N models the
packet arrival process on the AL. The value of the RV νk
is zero whenever the control packet is lost, and νk=1 if the
control packet is correctly delivered, i.e., νk∈Sν≜{0, 1}, for
any k∈N. Analogously, the sequence {γk}k∈N describes the
packet arrival process on the wireless SL. Particularly, γk=0

if the sensing packet is lost and γk=1 if it is successfully

D/A Process A/D

Discrete-time equivalent system

uc(t) ys(t)

Controller

ysk

SLAL

(ηk, γk, yk)

(θk−1,νk−1)

uk

uc
k

Fig. 1. Remote output-feedback architecture.

delivered, i.e., for all k∈N, γk∈Sγ ≜ {0, 1}. The processes νk
and γk are collections of binary RVs and the probability of
having a packet loss or a correct packet transmission over
each link depends on its SINR. The SINR is determined by
propagational environment and related physical phenomena
[22]. SINR is a stochastic process and can be abstracted by a
Markov chain. Each Markov mode is associated with a certain
packet error probability (PEP). We consider the stochastic
basis (Ω,F , {Fk}k∈N,P), where Ω is the sample space, F is the
σ-algebra of (Borel) measurable events, {Fk}k∈N is the related
filtration, and P is the probability measure. SL and AL modes
are the output of the Markov chains η : N× Ω → Sη ⊆ N and
θ : N× Ω → Sθ ⊆ N, respectively. Indeed, the Markov modes
of {ηk}k∈N and {θk}k∈N belong to finite sets Sη = {1, 2, . . . , I}
and Sθ = {1, 2, . . . , N}, respectively.

Remark 2: Previous works such as [4], [5] do not consider
the communication channel mode, but actually the receiver
has access to this information, by performing a channel state
estimation [23]. The novelty of this paper lies within the OFC
in the FSMC setting.
Moreover, the described Markov chains are characterized
by time-invariant transition probability matrices (hereafter,
TPMs) P = [pij ]

N
i,j=1 (for {θk}) and Q = [qmn]

I
m,n=1 (for

{ηk}), respectively. Each TPM may be obtained by integrating
the joint probability density function of the SINR over two
consecutive packet transmissions and over the desired regions
[8], [22]. The TPM values may also be validated through the
empirical data from a measurement campaign for calibrating
the theoretical model parameters. The uncertainties in TPM
values neglected in this work can then be addressed via a
polytopic model (e.g., [24] and the references therein).

Remark 3: The network-induced communication delays
due to multiple path routing and time-varying processing
delays in relay nodes of multi-hop networks are not an issue
for single-hop sensing and actuation links with scheduled
medium access considered in this paper and extensively used
in delay-sensitive control applications relying, e.g., on the low
latency deterministic network mode of IEEE 802.15.4e.
The entries of TPMs P and Q are defined as

pij≜P(θk+1=j | θk= i), qmn≜P(ηk+1=n | ηk=m), (2)

satisfying:
∑

j∈Sθ pij = 1,
∑

n∈Sη qmn = 1, i ∈ Sθ, m ∈ Sη .
Since the probability of a packet loss depends on the mode of
the Markov chain, the values of νk and γk are either zero or
one with certain probabilities depending on the current Markov
mode.
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Fig. 2. FSMC model for SL: the Markov chain ηk represents the
evolution of the channel, while successful packet delivery and PER
come from γ̂m, m ∈ Sη .

Remark 4: In this network scenario, up-link and down-link
models are split up. This separation already exists in literature
[3], [4]. However, unlike the previous literature, we explicitly
consider the channel mode (see Remark 2) by providing two
independent FSMCs for SL and AL, respectively.

1) Sensing FSMC: Let yk denote the measurement received
by the output-feedback controller at time k ∈ N. The general
model for the SL is yk = γky

s
k: the value of the RV γk when

the current Markov mode is ηk ∈ Sη is a function of ηk, and,
for notational convenience, we denote it as γk = γ(ηk). The
probability of having a successful packet delivery on the SL
depends on the current Markov mode ηk=m, i.e.,

γ̂m≜P(γk=1 | ηk=m), P(γk=0 | ηk=m)=1−γ̂m, (3)

are the probability that the packet is successfully delivered
at time k∈N, and the likelihood of a packet loss occurrence
conditioned to ηk=m, respectively. Fig. 2 provides a graphical
representation of the FSMC model on the SL. A visual rep-
resentation of the AL is similar, and thus omitted for brevity.
Let πm(k) denote the probability P(ηk=m), for m∈Sη , k∈N.
The variable πm(k) can also be written through the indicator
function 1{ηk=m}, as πm(k)=E[1{ηk=m}], see [11]. We do set
π(k)=[πm(k)]Im=1.
For what concerns the process {γk}, applying Bayes Law,
the Markov property, and the independence between {γk} and
{ηk}, we obtain, for m,n ∈ Sη , [19]

P (γk+1 = 1, ηk+1 = n | ηk = m) = γ̂nqmn,

P (γk+1 = 0, ηk+1 = n | ηk = m) = (1− γ̂n) qmn.

2) Actuation FSMC: In the SL, the controller is the receiver
and has direct access to the channel information (see Re-
mark 2). For the AL, the controller is the transmitter and can
access the actuation channel information by an ack message,
as the reader may notice in Fig. 1. Obviously, the ack message
is received after the transmission, so there is a one time-step
delay. Let uk ∈ Fnu denote the control law computed by the
controller, and let uck denote the digital control input received
by the D/A block at time k ∈ N. The general model for the
AL is uck = νkuk: the value of the RV νk when the current
Markov mode is θk ∈ Sθ is a function of θk, and, for notational
convenience, we denote it as νk = ν(θk).

The probability of the correct packet delivery on AL de-
pends on the current mode of the AL, that is θk= i, i.e.,

ν̂i≜P(νk = 1 | θk = i), P(νk = 0 | θk = i)=1−ν̂i, (4)

are the probability that the packet is correctly delivered at
time k∈N, and the likelihood that the control packet is

lost conditioned to θk= i, respectively. For i ∈ Sθ, k∈N, the
probability P (θk= i) is denoted by ϖi(k). For ℓ, i ∈ Sθ, k∈N,
the joint probability of being in an augmented Markov state
(θk−1, θk), P (θk−1=ℓ, θk= i) is denoted by ϖ̃ℓi(k). Moreover,
the quantity ϖ̃ℓi(k) may be written using the indicator function
1{θk−1=ℓ,θk=i}, as ϖ̃ℓi(k)=E[1{θk−1=ℓ,θk=i}] [11]. We do set
ϖ̃(k)=[ϖ̃ℓi(k)]

N
ℓ,i=1. The probability ϖ̃ℓi(k) evolves according

to the following equations, for ℓ, i ∈ Sθ, k∈N [13]:

P (θk+1 = j, θk = i | θk ̸= i, θk−1 = ℓ) = 0,

P (θk+1 = j, θk = i | θk = i, θk−1 = ℓ) = pij .

Recalling that the availability of AL mode is affected by
one time-step delay, that is θk−1 (see Fig.1), the aggregated
Markov state (θk, θk−1) is considered [13]. This memory intro-
duced by the presented aggregation is fictitious: the aggregated
Markov chain satisfies the Markov property of the memoryless
chain {θk}. Moreover, we can compute the probabilities of the
joint process (νk, θk, θk−1) as in [13].

3) The information set: The scenario depicted in Fig. 3
shows the information flow of actuation and sensing data
between the plant and the controller, under TCP-like protocols,
i.e., in the presence of ack messages [4]. Transmissions and
computations do not happen instantly: as the reader may see
in Fig. 3, actuation and sensing transmission time (δ3 and δ1,
respectively) are greater than zero, as well as the control law
computation time (denoted by δ2) and the ack transmission
time δ4. Two different scenarios may arise: either the time
interval δ2 needed to the controller for the computations of es-
timation and control law is comparable to the sampling period
T (this may happen when slow computers are used to control
high-order systems) or the time needed for the estimation is
very small compared to the sampling period [18]. The first
case is depicted in Fig. 3-(a), where the computation time δ2 is
comparable to the sampling period T . The suitable estimation
technique in this case is provided by the LO, that requires the
measurements up through the previous time instant [18, Ch. 8].
By considering the delay δ1 introduced by the sensing trans-
mission, the controller owns the whole information necessary
for the estimation needed in the computation of uk+1 exactly
at kT + δ1. Formally, the information set available to the
output-feedback controller for the computation of uk+1, based
on the LO is Fk+1

l = {(ut)kt=0, (yt)
k
t=0, (νt)

k
t=0, (γt)

k
t=0}. The

information set Fk+1
l implies that in the Luenberger-based

output-feedback uk+1 does not depend on the most recent
observation [18, Ch. 8]. Thus, the estimate vector might not
be as accurate as the one obtained with the most recent
measurement. For high-order systems controlled by slow com-
puters, or whenever the sampling periods are comparable to the
computation time, the time interval between the observation
instant and the validity time of the control output allows
the computer to complete the calculations [18]. In many
systems however, the computation time required to evaluate
the estimation is quite short compared to the sampling period
(see δ5 in Fig. 3-(b)), and the delay of almost a cycle between
the measurement and the proper time to apply the resulting
control calculation represents an unnecessary waste. Therefore,
the controller may exploit the current output measurement to
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obtain a more accurate state estimation. Fig. 3-(b) shows the
time diagram of a two-step estimation algorithm: the first step
predicts the state estimate based on the measurement from
the previous time-step, while the following step corrects the
predicted estimate by integrating the most recent measurement.
The time needed to perform the last step (concerning the
estimate correction and control law computations) denoted
by δ5, is contained in δ2, and its brevity enables the control
law transmission within the proper time window, coherently
with the scenario described above of a controller with higher
performance, [18, Ch. 8]. Notably, the current measurement is
used within a different estimation technique (hereafter, current
estimator or CE) that provides a more accurate estimated
state vector based on the most recent output information.
The information set used for computing uk during δ5, de-
noted by Fk

c , collects the information received up through
kT + δ1. Formally, Fk

c ≜ {(ut)k−1
t=0 , (yt)

k
t=0, (νt)

k−1
t=0 , (γt)

k
t=0}.

We emphasize that the current control input based on Fk
c

has access to the most recent observation. Exploiting this
additional information considerably increases the performance
resulting in lower estimation error cost, as explained more in
detail in Sections IV and VIII.

Remark 5: The state-system model (1) does not explicitly
account for the sensing and actuation delays (δ1 and either
δ2+δ3 or δ5+δ3 for the LO and CE, respectively) below one
sampling period T . Completely neglecting these delays may
reduce the system stability. However, for the state-space-based
design, an actuation delay of a fraction of a sampling period
corresponds to augmenting the system, while the sensing delay
does not influence the sampled value [18, Ch. 4.3.4, 8.6]. Thus,
without loss of generality, we consider the system matrices
in (1) as augmented to account for the sub-sampling-period
delays.

Remark 6: A natural alternative to the considered estima-
tors is the mode-independent estimator based on KF described
in [4] by Schenato et al., which does not require a channel state
estimation and thus results in a less complex design. However,
the estimator in [4] may fail to support a stable OFC over
FSMCs, as discussed in Section VIII. The necessary condition
for a stable mode-independent estimation and control over
fading Markov channels is the system should behave well,
i.e., it should be Strong-MSD and Strong-MS stabilizable, as
detailed in Section VII.

B. Wireless control network model

Given the system described by (1) and actuation and sensing
FSMCs, the stochastic system describing the architecture in
Fig. 1 can be written as follows

xk+1 = Axk + νkBuk +Gwk,

yk = γkLxk + γkHwk,

zk = Cxk + νkDuk,

(5)

with zk ∈ Fnz (needed to define the performance index of the
optimal controller), C and D matrices of appropriate sizes.

Remark 7: Both νk and γk depend on the corresponding
channel mode according to the FSMC model, i.e., γk = γ(ηk)

(a) Luenberger observer timing diagram

(b) Current estimator timing diagram

Plant

Controller

Controller

Plant

δ1 Sensing transmission time (from sensors to controller)
δ2 Computation time of the controller
δ3 Actuation transmission time (from controller to actuators)
δ4 Acknowledgment transmission time
δ5 Time needed for estimate correction with the current output measure-

ment

Fig. 3. Information flow timing between the plant and the controller used
for the LO (a) and the CE (b).

and νk = ν(θk), respectively (see Section II-A). Therefore, we
refer to the system described by (5) as MJLS.
We assume that noise sequence {wk} is independent of the
initial state x0 and the sequences {νk} and {γk}. Moreover,

E[wk] = Onw , E[wkw
∗
k] = Inw , E[wkw

∗
l ] = Onw , (6)

∀k, l∈N, k ̸= l, see also [11]. We assume, without loss of
generality, that the system matrices are constant matrices of
appropriate sizes [11, Sec. 5.2], such that

GH∗=0, HH∗≻0, C∗D=0, D∗D≻0. (7)

Similarly to [11, Sec. 5.3], we make the following technical
assumptions (with k ∈ N):

a.1) initial conditions x0, θ0, and η0 are independent RVs,
a.2) white noise sequence {wk} is independent of initial con-

ditions (x0, ν0, γ0) and of processes {ν(θk)} and {γ(ηk)},
for any k,

a.3) Markov chains {θk}, {ηk} and the noise sequence {wk}
are independent,

a.4) Markov chains {θk} and {ηk} are ergodic, with steady-
state probability distributions ϖ̃∞

ℓi ≜ limk→∞ ϖ̃ℓi(k),
ϖ∞

i ≜ limk→∞ ϖi(k), and π∞
m ≜ limk→∞ πm(k), ℓ, i ∈ Sθ

and m ∈ Sη . We set ϖ̃∞=[ϖ̃∞
ℓi ]

N
ℓ,i=1 and π∞=[π∞

m ]Im=1.

This paper aims to solve the OFC problem over FSMCs
with two different estimation techniques guaranteeing the IH
convergence of the state in MS. This property is known as MSS
[11, Definition 3.8, pp. 36–37] that we present as follows.

Definition 1: The MJLS described by (5) is MSS if there
exist equilibrium points µ̂ and Q̂ (independent from initial
conditions) such that, for any initial condition (x0, ν0, γ0),
the following equalities hold: limk→∞ ∥E(xk)−µ̂∥=0,
limk→∞ ∥E(xkx∗k)−Q̂∥=0.
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III. OUTPUT-FEEDBACK CONTROLLER

This section shows two alternative OFC systems for the
problem formalized in Section II.

A. Control synthesis based on Luenberger observer
Consider the scenario in Fig. 3-(a) and the related information
set Fk

l , k ∈ N. The optimal LO-based Markov jump OFC
system relying on Fk

l for the synthesis of uk is

Gl :

{
x̌k+1 = Ǎ(νk, θk−1, γk, ηk)x̌k + B̌(ηk)yk,

uk = F̌ (θk−1)x̌k,
(8)

with x̌k being the estimated state obtained by the LO. The
controller Gl (with optimal matrices Ǎ(νk, θk−1, γk, ηk), B̌(ηk),
and F̌ (θk−1) to be found) should guarantee MSS of the closed-
loop system (see Definition 1). The sequences of matrices
F̌=[F̌ (ℓ)]Nℓ=1 and B̌=[B̌(n)]In=1 are the solutions of the opti-
mal control and of the optimal filtering problem, respectively.

B. Output-feedback controller with current estimator
Consider the scenario in Fig. 3-(b) and the related information
set Fk

c . The optimal CE-based Markov jump OFC system
relying on Fk

c for the synthesis of uk is

Gc :


x̃k+1 = Â(γk, ηk)x̃k+B̂(ηk)yk+Ĉ(νk, θk−1)x̂k,

x̂k+1 = x̃k+1+D̂(ηk+1) [yk+1−γk+1Lx̃k+1],

uk = F̂ (θk−1)x̂k,

(9)

with x̃k and x̂k, prediction state and correction state at time
k∈N, respectively, obtained using the CE. The controller
Gc (with optimal matrices Â(γk, ηk), B̂(ηk), Ĉ (νk, θk−1),
D̂(ηk+1), and F̂ (θk−1) to be found) should guarantee the MSS
of the closed-loop system (see Definition 1). The sequences
of matrices F̂=[F̂ (ℓ)]Nℓ=1 and D̂=[D̂(n)]In=1 are the solutions
of optimal control and filtering problem, respectively.

Remark 8: Both Gl and Gc should achieve the MSS of the
closed-loop system. The CE provides a valid alternative to the
LO and the proper control strategy should be chosen according
to the calculating capacity of the controller. When the com-
putation time δ5 (see Fig. 3-(b)) required for the correction of
the predicted estimate is under a certain threshold, the suitable
controller is Gc, otherwise Gl should be preferred, see also
Remark 9.

C. THE LINEAR QUADRATIC REGULATOR
The necessary condition for an optimal IH solution of the
wireless control problem is the MS stabilizability with delay.

Definition 2 (MS stabilizability with delay): The system
(5) is MS stabilizable with one time-step delayed AL mode
observation if, for any initial condition (x0, θ0), and for each
mode ℓ ∈ Sθ, there exists a mode-dependent gain Fℓ, such
that uk=Fθk−1

xk is the MS stabilizing state-feedback for (5).
Let Fℓ∈Fnu×nx , ℓ ∈ Sθ, denote the optimal mode-dependent
control gain with one time-step delayed operational mode
observation of the AL (see [13] for the solution of the IH
optimal control problem and [10] for a more general result).
For any X = [Xl]

N
l=1∈HNnx,+, l∈Sθ, let us define Al(X)

and Cl(X) as follows: Al(X) ≜ A∗(
∑N

i=1 pliXi)A+ C∗C,
Cl(X) ≜ A∗(

∑N
i=1 pliν̂iXi)B. Let us also define Bl(X)

as Bl(X) ≜
∑N

i=1 pliν̂i(B
∗XiB +D∗D) and Xl(X) as

Xl(X) ≜ Al(X)− Cl(X)B−1
l (X)C∗l (X). For l ∈ Sθ, the set

of equations Xl=Xl(X) is the set of control coupled
algebraic Riccati equations (hereafter, control CAREs). The
necessary condition for the existence of the MS stabilizing
solution X̃∈HNnx,+ of the control CAREs is the MS
stabilizability with delay of system (5) (see Definition 2).
If X̃∈HNnx,+ is the MS stabilizing solution of the control
CAREs, then the state-feedback control input Fθk−1

xk
stabilizes the system, with one time-step delay in the
observation of the AL mode in the MS sense (see [13]).
The optimal control problem solution is obtained by using
the LMI approach [10]. The optimized performance index
is given by Jh=lim supt→∞

1
tE

[∑t
k=0(zkz

∗
k) |F

k
h

]
, with

zk in (5), h = l for the LO and h = c for the CE. The
performance index achieved by the optimal control law is
J∗
h=

∑N
i=1 ϖ

∞
i tr (G∗XiG).

IV. ESTIMATION TECHNIQUES

The output-feedback controllers introduced in Section III rely
either on the LO (Gl) or on the CE (Gc). The aim of the
control law is ensuring the MSS of the closed-loop system. The
aim of each estimator is ensuring MSS of the estimation error
dynamical system associated with the estimation technique.

Definition 3: The MJLS (5) is MSD if there exists an
estimator such that the corresponding estimation error system
is MSS.

Remark 9: For the case in which the information on the
output of the system and on the Markov chain are available
at each time-step, the best linear estimator of x(k) is the KF
(see [11, Remark 5.2]). In offline computations of the KF,
the solutions of the difference Riccati equations and of the
time-varying Kalman gain are sample-path dependent, and
the number of sample paths grows exponentially in time.
Thus, KF offline implementation is inadvisable here [17].
On the other hand, an online implementation of the KF
requires online matrix inversions which might have a heavy
computational burden. Therefore, this work takes into account
a different class of estimators with filtering gains pre-computed
offline. This avoids online matrix inversions and reduces the
computational burden.

A. The Markovian Luenberger observer

This subsection briefly recalls the Markovian LO presented in
[19], given by

Ǧ :


x̌k+1=Ax̌k+νkBuk−M̌ηk

(yk−γkLx̌k),

uk=Fθk−1
x̌k,

x̌(0)= x̌0,

(10)

with M̌m, m ∈ Sη , mode-dependent filtering gain obtained as
solution of the Luenberger filtering problem, which relies on
the information set Fk

l . Note that when the controller makes
the computations for x̌k+1, it knows whether the packets con-
taining the control law uk and the measurement yk have been
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received or not. Indeed, this information is contained in Fk+1
l ,

which is exploited for computing the proper control input to
apply at time k + 1, that is uk+1=Fθk

x̌k+1. Let us define the
LO estimation error at time-step k ∈ N as ěk≜xk−x̌k. The
error dynamics are derived as follows:

ěk+1 =
(
A+γkM̌ηk

L
)
ěk+

(
G+ γkM̌ηk

H
)
wk. (11)

B. The Markovian current estimator

The CE [18, Ch. 8] over the FSMC results in the following
MJLS,

Ĝ :


x̂k+1 = x̃k+1 − M̂ηk+1

[yk+1 − γk+1Lx̃k+1],

yk+1 = γk+1Lxk+1 + γk+1Hwk+1,

uk = Fθk−1
x̂k,

(12)

with M̂m, m ∈ Sη , mode-dependent filtering gain obtained
by solving the CE problem that relies on the information
set Fk

c [18]. The variables x̃k and x̂k are the predicted and
the estimated state vectors at time-step k∈N, respectively.
The CE is a two-step estimation algorithm: the first step
computes the prediction x̃k+1 = Ax̂k + νkBuk based on the
measurement from the previous time-step, while the following
step corrects the predicted estimate by integrating the most
recent measurement. The estimated state vector resulting from
this correction with yk+1 is x̂k+1.
Define the prediction error at time-step k∈N as ek≜xk−x̃k.
The resulting estimated state Markov jump system is

x̂k+1= x̃k+1−γk+1M̂ηk+1
Lek+1−γk+1M̂ηk+1

Hwk+1. (13)

Remark 10: At time-step k+1, the predicted state x̃k+1 is
corrected exploiting the prediction error ek+1, through the
most recent output measurement.
By substituting x̂k, obtained from (13), in the prediction, the
expression of x̃k+1 depends on the prediction error, as follows,

x̃k+1=Ax̃k+νkBuk−γkAM̂ηk
Lek−γkAM̂ηk

Hwk. (14)

Therefore, the prediction error MJLS is given by

ek+1=
(
A+γkAM̂ηk

L
)
ek+

(
G+ γkAM̂ηk

H
)
wk. (15)

Define the CE estimation error as êk ≜ xk − x̂k. Consequently,

êk+1=ek+1+γk+1M̂ηk+1
Lek+1+γk+1M̂ηk+1

Hwk+1. (16)

Remark 11: In the LO, the estimation error coincides with
the prediction error. In the CE, when the prediction error ek
converges to zero, by (16), the estimation error goes to zero.
Thus, (16) and (15) are equivalent at the steady-state.

Remark 12: Neither the control input nor the Markov chain
{θk} are involved in the MJLSs (11) and (15). This implies
that the optimal mode-dependent LO gain M̌m and the CE
gain M̂m, m ∈ Sη , can be designed independently from the
optimal mode-dependent control gain Fℓ, ℓ∈Sθ.

C. Computation time

It is well known that the total number of floating-point opera-
tions or flops to carry out the presented estimation algorithms
may provide a rough estimate of the computation time [25].
Given the state estimate vector, the number of flops needed
for the evaluation of the control law is O(nunx). Moreover,
the computational complexity of both the Luenberger and the
current state estimation numerical algorithms is the same:
O(n2

x + nxnu + ny + nxny). The physical constraint for es-
timator implementation is obtained comparing δ2 (the time
needed for all the computations leading to the control law) and
the sampling time T . If the condition δ2 < T is satisfied, then
the LO represents a viable technique. Under this constraint, if
δ5 (which is shorter than δ2 as already seen in Section II-A.3)
is such that the control transmission remains inside the proper
time window, the current estimation is feasible and provides
a more accurate result.

Remark 13: The physical constraints (concerning the com-
putation time) discussed above provide necessary conditions
for implementation. However, taking into account combined
packet losses in both communication channels, as well as
considering the actuation delay, the IH OFC is not easy
to be modeled and formally solved. Trivially, when all the
communication is lost, an unstable plant cannot be stabilized
remotely. The conditions concerning the theoretical existence
of the IH estimators and controllers operating over FSMCs can
be based on the MS detectability and stabilizability notions
(discussed in the following sections) guaranteeing a MS stable
behavior of estimators and controller with pre-computed gains.

V. OBSERVER STABILITY ANALYSIS

This section provides the MSD specializations for the LO and
the CE, respectively.

A. The operators

We introduce some mathematical preliminaries instrumen-
tal for MSS analysis (see [11]). For all S = [Sm]Im=1,
T = [Tm]Im=1, both in HInx , we specify the inner prod-
uct as ⟨S;T⟩≜

∑I
m=1tr (S

∗
mTm). Let us define the opera-

tors E(·)≜ [Em(·)]Im=1, D(·)≜ [Dm(·)]Im=1, T (·)≜ [Tm(·)]Im=1,
L(·)≜ [Lm(·)]Im=1, and V(·)≜ [Vm(·)]Im=1, all in B

(
HInx

)
, for

all S = [Sm]Im=1 in HInx , m,n ∈ Sη , as follows.

Em(S) ≜
∑I

n=1
qmnSn, Dn(S) ≜

∑I

m=1
qmnSm, (17)

Tn(S)≜
∑I

m=1
qmn

{̂
γmΓ̂m1SmΓ̂∗

m1+(1−γ̂m)Γ̂m0SmΓ̂∗
m0

}
,

(18)

Lm(S)≜ γ̂mΓ∗
m1Em(S)Γm1+(1−γ̂m)Γ∗

m0Em(S)Γm0, (19)

Vn(S) ≜ γ̂nΓn1Dn(S)Γ
∗
n1+(1−γ̂n)Γn0Dn(S)Γ

∗
n0, (20)

where the matrices Γn1, Γn0, Γ̂n1, and Γ̂n0 are arbitrary matri-
ces in Fnx×nx that will be specialized later in the paper, while
qmn and γ̂n are those defined by (2) and (3), respectively. De-
fine O(·, ·) : HInx,ny×RI → HInx , with O(·, ·)≜ [Om(·, ·)]Im=1,
and Ô(·, ·) : HInx,ny×RI → HInx , with Ô(·, ·)≜ [Ôm(·, ·)]Im=1,
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for M≜ [Mn]
I
n=1 arbitrary matrix in HInx,ny , and α=[αn]

I
n=1

arbitrary vector in RI , n∈Sη , as

On(M,α)≜ αn (GG∗ + γ̂nMnHH∗M∗
n) , (21)

Ôn(M,α)≜
I∑

m=1

qmnαm(GG∗+γ̂mAMmHH∗M∗
mA∗). (22)

Given Kmκ=Γ̄mκ⊗Γmκ, κ = 0, 1, define C, N ∈ FIn
2
x×In2

x , as

N≜
I⊕

m=1

(γ̂mKm1)+

I⊕
m=1

((1−γ̂m)Km0) , C≜Q′⊗In2
x
. (23)

Remark 14: The matrices N and C are designed with the
aim of providing a suitable methodology for the test of
detectability conditions in Definitions 4 and 5, as will be
discussed later. However, even though the aim is the same
as in [11], differently from [11], they account for the general
FSMC scenario, i.e., they involve the probability γ̂m, m ∈ Sη .

Proposition 1: Consider the operators T , L, V in B(HInx),
defined in (18), (19), and (20), respectively. Then,
i) ρ(L) = ρ(V),
ii) if Γ̂m0 = Γm0 and Γ̂m1 = Γm1 for all m ∈ Sη , then

ρ(L)=ρ(V)=ρ(T ).
Proof: See Appendix.

Remark 15: Proposition 1 shows the equivalence of opera-
tors V, T , L, concerning the spectral radius [11, Ch. 3].

B. Luenberger observer stability analysis
The Luenberger stability analysis is based on the IH solution
of filtering CAREs, which are derived as on the asymptotic so-
lution of difference Riccati equations and obtained by defining
the first and second moments of the error ěk, k ∈ N, as follows,

m̌n(k)≜E
[
ěk1{ηk−1=n}

]
, m̌(k)≜

[
m̌n(k)

]I
n=1

∈FInx, (24)

Y̌n(k)≜E
[
ěkě

∗
k1{ηk−1=n}

]
, Y̌(k)≜[Y̌n(k)]

I
n=1∈HInx,+, (25)

for n ∈ Sη . Consequently, E[ěk] =
∑I

n=1 m̌n(k) and
E[ěk ě∗k] =

∑I
n=1 Y̌n(k). For arbitrary matrices Γn1 and

Γn0 in Fnx×nx , n∈Sη , define B̌∈FInx×Inx as

B̌≜

((
I⊕

n=1

(γ̂nΓn1)

)
+

(
I⊕

n=1

((1− γ̂n)Γn0)

))
(Q′⊗Inx

). (26)

Define also M̌ ≜ [M̌m]Im=1, i.e., the sequence of mode-
dependent filtering gains in (10) providing the solution of the
LO filtering problem. Hence, we can state the following.

Proposition 2: Consider the error system described by (11).
Then, for all k∈N, the following equalities hold:

m̌(k+1)= B̌m̌(k), Y̌(k+1)=V(Y̌(k))+O(M̌,π(k)), (27)

with B̌, V, and O defined in (26), (20) and (21), for Γn0=A

and Γn1=A+M̌nL, n ∈ Sη .
Proof: See Appendix.

The following definition provides a specialization of Defini-
tion 3 for the LO scenario.

Definition 4 (MSD): The system described by (5) is MSD
if, for each mode n∈Sη , there exists a mode-dependent filter-
ing gain M̌n∈Fnx×ny , such that ρ(V)<1, V∈B(HInx) defined
in (20), for Γn1=A+M̌nL and Γn0=A.

From now on, we refer to Definition 4 when using MSD.
Remark 16: By applying the results from [11, Sec. 3.4.2],

the property provided by Definition 4 is equivalent to the MSS
of the error system (11).

C. Current estimator stability analysis
Analogous steps for the Luenberger observer stability analysis
are reported in the following. Define for n∈Sη , k∈N,

mn(k)≜E
[
ek1{ηk=n}

]
, m(k)≜[mn(k)]

I
n=1∈FInx, (28)

Zn(k)≜E
[
eke

∗
k1{ηk=n}

]
, Z(k)≜

[
Zn(k)

]I
n=1

∈HInx,+. (29)

Consequently, E[ek] and E[eke∗k] are given by
E[ek] =

∑I
n=1 mn(k) and E[eke∗k] =

∑I
n=1 Zn(k). For Γ̂n1 and

Γ̂n0 ∈ Fnx×nx , n∈Sη , define B̂∈FInx×Inx as

B̂≜(Q′⊗Inx)

(
I⊕

n=1

(
γ̂nΓ̂n1

)
+

I⊕
n=1

(
(1− γ̂n)Γ̂n0

))
. (30)

Let M̂= [M̂m]Im=1 be a sequence of mode-dependent filtering
gains in (12) providing the solution of the CE filtering prob-
lem. The following proposition formalizes the dynamics of the
observation error first and second moments.

Proposition 3: Consider the error system described by (15).
Then, for all k∈N, the following equalities hold:

m(k+1)= B̂m(k), Z(k+1)=T (Z(k))+Ô
(
M̂,π(k)

)
, (31)

with B̂, T , and Ô defined in (30), (18), and (22), respectively,
for Γ̂n1=A+AM̂nL and Γ̂n0=A, n ∈ Sη .

Proof: See Appendix.
The following definition adapts Definition 3 to the CE sce-
nario.

Definition 5 (Strict-MSD): The system described by (5) is
Strict-MSD if, for each mode n ∈ Sη , there exists a mode-
dependent filtering gain M̂n∈Fnx×ny , such that ρ(T )<1, with
T ∈B(HInx) defined in (18), for Γ̂n1=A+AM̂nL and Γ̂n0=A.

Proposition 4: Assume that MJLS (5) is Strict-MSD. Then,
(5) is MSD according to Definition 4.

Proof: See Appendix.
Remark 17: By the results from [11, Sec. 3.4.2] applied

to the operator T (with T as in Definition 5), ρ(T )<1 is
equivalent to the MSS of the error system described by (15).

D. The Luenberger observer filtering CAREs
The optimal mode-dependent filtering gain of LO results

from the optimization of the following performance index:
J∗
L = lim supt→∞(1/t)E[

∑t
k=0 (ěk ě

∗
k) | F

k
l ]. Obtaining the op-

timal performance index in the Luenberger scenario necessi-
tates dealing with Luenberger filtering CAREs, introduced as
follows. Define for any Y∈HInx,∗, α=[αn]

I
n=1∈RI ,

Ǎn(Y,α)≜ADn(Y)A∗+αnGG∗, B̌n(Y)≜ADn(Y)L∗,

Řn(Y,α)≜αnHH∗+LDn(Y)L∗, Čn(Y)≜ γ̂
1
2
n B̌n(Y),

for n ∈ Sη . Consider the set W, defined as follows:

W={(Y,α) ∈ HInx,∗ × RI , such that

Řn(Y,α) is non-singular for any n ∈ Sη}.
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For (Y,α)∈W, define the operators M (·, ·) : W → HInx,ny

and Y (·, ·) : W → HInx as M (Y,α)=
[
Mn (Y,α)

]I
n=1

and
Y (Y,α)=

[
Yn (Y,α)

]I
n=1

, with

Mn(Y,α)≜−B̌n(Y) Ř−1
n (Y,α), (32)

Yn(Y,α)≜Ǎn(Y,α)−Čn(Y)Ř−1
n (Y,α) Č∗

n(Y), (33)

for any n∈Sη (see [11, Sec. A.1]). For notational convenience,
let us set M(Y)=M(Y,π∞), Y(Y)=Y(Y,π∞), and, for
n∈Sη , Řn(Y)=Řn(Y,π∞), Ǎn(Y)=Ǎn (Y,π∞). The LO
filtering CAREs are the set of equations given by

Yn = Yn(Y), n ∈ Sη. (34)

The optimal IH mode-dependent filtering gain is obtained from
the solution of the following optimization problem:

max tr

(∑I

n=1
Yn

)
(35a)

subject to [
−Yn + Ǎn(Y) Čn(Y)

Č∗
n(Y) Řn(Y)

]
⪰ 0, (35b)

Řn(Y) ≻ 0, Y ∈ HInx,∗, n ∈ Sη. (35c)

Define the sets L and M as follows,

L ≜ {Y∈HInx,∗; Řn(Y) non-singular ∀n∈Sη},
M ≜ {Y∈L; Ř(Y) ≻ 0 and −Y+Y(Y)⪰0}.

Then, the MS stabilizing filtering gain is given by

M̌n=Mn(Y), n∈Sη, (36)

where Y∈L is the MS stabilizing solution of (34) [11, Sec.
A.1].

Definition 6 (MS stabilizing solution of (34)): Y∈L is the
MS stabilizing solution of (34) if it satisfies (34) and ρ(V)<1,
with V ∈ B(HInx) defined in (20), Γn1=A+Mn(Y)L and
Γn0=A, n∈Sη; i.e., Mn(Y) stabilizes the error system (11)
in the MS sense.
The maximal solution of (34) and the solution of (35) coincide,
as stated in the following theorem.

Theorem 1: Assume that (5) is MSD. Then, the following
statements are equivalent:
i) there exists Y+∈M satisfying (34), such that Y+ ⪰ Y,

for all Y ∈ M,
ii) there exists a solution Ŷ for the convex programming

problem described in (35).
Moreover, the two solutions coincide, i.e., Ŷ=Y+.

Proof: See Appendix.
The maximal solution and the MS stabilizing solution of (34)
are connected, as stated in the following theorem.

Theorem 2: There exists at most one MS stabilizing solu-
tion of (34), which coincides with the maximal solution in
M, that is, the solution of the convex programming problem
described in (35).

Proof: See Appendix.
The MS stabilizing filtering gain (36) is computed exploiting
the maximal solution of (34), i.e., the solution of (35), as stated

in Theorem 2. Consequently, the optimal performance index
achieved by the LO is J∗

L=
∑I

m=1 tr(Ym), with Y = [Ym]Im=1

being the maximal solution of (34). The necessary condition
for the existence of the MS stabilizing solution of the filtering
CAREs is the MSD of system (5).

E. The current estimator filtering CAREs
The optimal mode-dependent filtering gain of the CE results

from the optimization of the following performance index,
J∗
C =lim supt→∞(1/t)E[

∑t
k=0(eke

∗
k)|F

k
c ].

Remark 18: J∗
C (computed exploiting the prediction error)

can be compared to the Luenberger performance index J∗
L

(computed exploiting the estimation error) because the esti-
mation error for the LO and the prediction error for the CE
are equivalent at the steady-state, see Remark 11.
For Z=[Zm]Im=1∈HInx,∗ and α=[αn]

I
n=1∈RI ,

define Ân(Z,α), R̂n(Z,α), and Ĉn(Z), as
Ân(Z,α)≜AZnA

∗+αnGG∗, R̂n(Z,α) ≜ LZnL
∗+αnHH∗,

and Ĉn(Z) ≜ AZnL
∗, respectively, for n∈Sη . Consider the set

Wc,

Wc ={(Z,α) ∈ HInx,∗ × RI , such that

R̂n (Z,α) is non-singular for any n ∈ Sη}.

For (Z,α)∈Wc, define operators M̂(·, ·) : Wc → HInx,ny

and Z(·, ·) : Wc → HInx as M̂(Z,α)=[M̂n(Z,α)]In=1 and
Z(Z,α)=[Zn(Z,α)]In=1 [11, Sec. A.1], with

Zn(Z,α)≜
I∑

m=1

qmn{Âm(Z,α)−γ̂mĈm(Z)R̂−1
m (Z,α)Ĉ∗

m(Z)},

M̂n (Z,α) ≜ −ZnL
∗R̂−1

n (Z,α) .

For notational convenience, let us set M̂ (Z)=M̂ (Z,π∞) and
Z (Z)=Z (Z,π∞), that are CE filtering CAREs.
The following lemma states the equivalence of the filtering
CAREs solutions and the filtering gains, for the LO and CE.

Lemma 1: The following statements are equivalent:
i) For any Y(0)∈HInx,+, Y(k)∈HInx,+, k∈N, satisfying

Y(k+1)=Y (Y(k),π(k)), with Y defined in (33), con-
verges to Y∈HInx,+ satisfying Y=Y (Y).

ii) For any Z(0)∈HInx,+, Z(k)∈HInx,+, k∈N, satisfying
Z(k+1)=Z(Z(k),π(k)), converges to Z∈HInx,+ satis-
fying Z=Z (Z).

Moreover, the mode-dependent filtering gain that stabilizes
the error system (15) in the MS sense is M̂n=M̂n(Z),
and the optimal performance index achieved by the CE
is J∗

C =
∑I

n=1 tr(Zn), with Z=[Zn]
I
n=1∈HInx , Zn given by

Zn=Dn(Y), n∈Sη , and Y maximal solution of (34).
Proof: See Appendix.

Remark 19: The LO and the CE are equivalent from the
steady-state point of view, as stated in Lemma 1. However,
their difference in performance (indicated by indexes JL
and JC) and physical constraints (see Remark 13) allow for
choosing the most suitable estimator for a specific scenario,
as shown in Sections II-A.3 and IV-C.

Remark 20: If the matrix A is non-singular, then, from
Lemma 1, we may compute the LO filtering gain as
M̌n = A−1M̂n.
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VI. THE SEPARATION PRINCIPLE

In the following we state the separation principle for the LO
and CE scenarios, respectively.

A. The Luenberger observer separation principle

Consider the optimal matrices in (8), which we can express
as follows:

Ǎ(νk, θk−1, γk, ηk) = A+ νkBFθk−1
+ γkM̌ηk

L,

B̌(ηk) = −M̌ηk
, F̌ (θk−1) = Fθk−1

.

Then, the optimal output-feedback controller (8) coincides
with (10), and the closed-loop system dynamics are

xk+1=(A+νkBFθk−1
)xk−νkBFθk−1

ěk+Gwk. (37)

By recalling the error dynamics described in (11), we write
the closed-loop system as follows:

Ǧcl : Ek+1 = Γ (νk, θk−1, γk, ηk) Ek +Σ(γk, ηk)wk, (38)

Ek≜
[
xk

ěk

]
, Σ (γk, ηk)≜

[
G

G+γkM̌ηk
H

]
,

Γ(νk, θk−1, γk, ηk)≜

[(
A+νkBFθk−1

)
−νkBFθk−1

Onx

(
A+ γkM̌ηk

L
)].

Theorem 3: Given a MJLS described by (5) and the LO
(10), the following statements are equivalent:
i) the dynamics (37) can be made MSS;
ii) the MJLS described by (5) is both
ii-a) MSD,
ii-b) MS stabilizable with one time-step delayed AL mode

observation.
Proof: See Appendix.

B. The current estimator separation principle

Consider the optimal matrices in (9), which we assert as
follows:

Â(γk, ηk)≜A+γkAM̂ηk
L, B̂(ηk)≜−AM̂ηk

,

F̂ (θk−1)≜Fθk−1
, Ĉ(νk, θk−1)≜νkBFθk−1

, D̂(ηk)≜−M̂ηk
.

Then, (12)-(14) coincide with (9), and the dynamics of the
closed-loop system are the following:

xk+1=(A+νkBFθk−1
)xk+(G− γkνkBFθk−1

M̂ηk
H)wk

−(νkBFθk−1
+γkνkBFθk−1

M̂ηk
L)ek. (39)

By recalling the error dynamics described in (15), we write
the closed-loop system in a compact form as follows:

Ĝcl : Xk+1 = Ψ(νk, θk−1, γk, ηk)Xk +Ω(νk, θk−1, γk, ηk)wk,

with Ψ(νk, θk−1, γk, ηk) ≜[
(A+νkBFθk−1

) −(νkBFθk−1
+γkνkBFθk−1

M̂ηk
L)

Onx

(
A+γkAM̂ηk

L
) ]

,

Xk≜

[
xk

ek

]
, Ω(νk, θk−1, γk, ηk)≜

[
G−γkνkBFθk−1

M̂ηk
H

G+γkAM̂ηk
H

]
.

TABLE I
DETECTABILITY AND STABILIZABILITY ANALYSIS SUMMARY

C.A C.B C.C C.D
MSD ✗ ✓ ✓ ✓
Strict-MSD ✗ ✓ ✓ ✓
Strong-MSD ✗ ✗ ✓ ✓
Strong-Strict-MSD ✗ ✗ ✓ ✓
MS stabilizability ✗ ✗ ✓ ✓
Strong-MS stabilizability ✗ ✗ ✗ ✓

Remark 21: The matrices Ψ and Γ are upper triangular
block diagonal matrices as in [11], i.e., the error dynamics
(driven by {ηk}) do not depend on the state dynamics (induced
by {θk}). Differently from [11], the closed-loop dynamical
matrices Γ and Ψ contain the Markov jumps not only of
the Markov chain {ηk} (SL) but of the Markov chain {θk}
(AL) too (see the FSMC model in Sections II-A.1 and II-A.2).
Moreover, we consider the mode observation delay affecting
the Markov chain {θk}k∈N.

Theorem 4: Given a MJLS described by (5) and CE (12),
the following statements are equivalent:
i) the dynamics (39) can be made MSS,
ii) the MJLS described by (5) is both
ii-a) Strict-MSD,
ii-b) MS stabilizable with one time-step delayed AL mode

observation.
Proof: See Appendix.

VII. MODE-INDEPENDENT OUTPUT-FEEDBACK

Under the conditions presented in this section, the designer
can use mode-independent control and filtering gains. The
advantage of mode-independence concerns the reduced com-
putational burden, especially when the number of modes
increases. The strong MS stabilizability (defined in the follow-
ing) guarantees the existence of a mode-independent control
gain, which is MS stabilizing. On the other hand, the following
definitions of Strong-MSD and Strong-Strict-MSD provide
the basis for deriving sufficient conditions guaranteeing the
existence of a mode-independent filtering gain, which makes
the estimation error system MSS.

Definition 7 (Strong-MS stabilizability): The system (5) is
Strong-MS stabilizable with one time-step delayed AL mode
observation if, for any initial condition (x0, θ0), there ex-
ists a mode-independent control gain F b∈Fnu×nx such that
uk=F bxk is the MS stabilizing state-feedback for (5).
The following Strong-MSD and Strong-Strict-MSD notions
instead concern the SL.

Definition 8 (Strong-MSD): The system (5) is Strong-MSD
if there exists a mode-independent filtering gain M̌b ∈ Fnx×ny ,
such that ρ(V)<1, with V∈B(HInx) defined in (20), for
Γn1=A+M̌bL, Γn0=A, and n∈Sη .

Definition 9 (Strong-Strict-MSD): The system (5) is
Strong-Strict-MSD if there exists a mode-independent filtering
gain M̂b∈Fnx×ny , such that ρ(T )<1, with T ∈B(HInx)

defined in (18), for Γ̂n1=A+AM̂bL, Γ̂n0=A, and n∈Sη .
Proposition 5: Consider the MJLS (5). The following im-

plications hold.
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Fig. 4. Estimation error on cart position obtained by Monte Carlo
simulations are reported in yellow, the mean error trajectory in red, the
maximum error trajectory in blue, and the minimum error trajectory in
green. The top right of each panel reports a zoom in for each plot.

i) Strong-MSD implies MSD.
ii) Strong-Strict-MSD implies Strict-MSD and Strong-MSD.

Proof: See Appendix.
Remark 22: Strong-Strict-MSD implies all the detectability

notions concerning the FSMC model. Thus, it is the strongest
notion, while MSD is the weakest one.
We introduce the mode-independent output-feedback recalling
the filtering and control modified algebraic Riccati equations
(MARE) reported in the following [4], [26]. To this end, define

Åb
(
Y b
)
≜AY bA∗+GG∗, C̊b

(
Y b
)
≜AY bL∗,

R̊b
(
Y b
)
≜ LY bL∗+HH∗, M̊b

(
Y b
)
=−Y bL∗R̊b

(
Y b
)−1

,

Ab
(
Xb
)
≜A∗XbA+C∗C, Cb

(
Xb
)
≜B∗XbA,

Rb
(
Xb
)
≜B∗XbB+D∗D, Fb

(
Xb
)
=−Rb

(
Xb
)−1Cb

(
Xb
)
.

for Y b, Xb∈Fnx×nx∗ . Consider the sets

L̊b ≜ {Y b ∈ Fnx×nx
∗ such that R̊b

(
Y b
)

is non-singular},
Lb ≜ {Xb ∈ Fnx×nx

∗ such that Rb
(
Xb
)

is non-singular}.

For Y b
∞∈ L̊b, Xb

∞∈Lb, the filtering and control MARE are

Y b
∞ = Åb

(
Y b
∞
)
− γ̊C̊b

(
Y b
∞
)
R̊b
(
Y b
∞
)−1 C̊b∗(Y b

∞
)
, (40)

Xb
∞ = Ab

(
Xb

∞
)
− ν̊Cb∗(Xb

∞
)
Rb
(
Xb

∞
)−1 Cb

(
Xb

∞
)
. (41)

Under the strong MS stabilizability condition, the mode-
independent MS stabilizing control gain exists, and it is
given by F b=Fb(Xb

∞), with Xb
∞∈Lb satisfying (41) [13].

Moreover, the critical arrival probability on the AL is defined
as νc ≜ infν{0 ≤ ν ≤ 1 such that Xb

∞ ⪰ 0 satisfies (41)}
[4, Lemma 5.4 (a)], and the critical observation
arrival probability on the SL is denoted by γc [4,
Th. 5.5]. By [4, Lemma 5.4, Th. 5.5], νc and γc satisfy
pmin≤νc ≤ pmax and pmin≤γc≤γmax≤pmax, where
pmin ≜ 1− 1/(maxh |λuh(A)|2), pmax ≜ 1− 1/

∏
h |λuh(A)|2,

with λuh(A) being the h-th unstable eigenvalue of A, and
γmax≜ infγ{0≤γ≤1 such that Y b

∞⪰0 satisfies (40)}.
Remark 23: Strong-MSD condition guarantees the exis-

tence of the mode-independent filtering gain, that can be
computed as M̌b=AM̊b(Y b

∞), with Y b
∞∈ L̊b satisfying (40).

Moreover, if Strong-Strict-MSD is satisfied, the existence of
the CE mode-independent filtering gain is guaranteed. In

this case, the filtering gain can be computed as follows:
M̂b=M̊b(Y b

∞), with Y b
∞∈ L̊b.

The next theorem links the optimal mode-dependent filtering
CARE solution and mode-independent solutions of the filter-
ing MARE. Specifically, the solutions of the filtering problem
are equivalent under particular conditions. The same holds for
the control problem [13, Th. 3].

Theorem 5: Assume that ν̊=
∑N

i=1 ϖiν̂i, γ̊=
∑I

m=1 π
∞
m γ̂m.

Then, the following statements hold.

i) The solution of the filtering MARE provides the mode-
independent solution of the filtering CAREs.

ii) The solution of the control MARE provides the mode-
independent solution of the control CAREs.
Proof: See Appendix.

LMIs guaranteeing MS detectability conditions are presented
as follows:

A∗ZmA+γ̂mA∗Wm2L+γ̂mL∗W ∗
m2A+γ̂mL∗Wm3L−Wm1≺0;

(42a)[
Zm Wm2

W ∗
m2 Wm3

]
⪰ 0; (42b)

Zm ⪰ Em(W1), Wm1 ≻ 0, Zm ≻ 0, m ∈ Sη, (42c)

W1=[Wm1]
I
m=1, Z=[Zm]Im=1 in HInx,+, W2=[Wm2]

I
m=1 in

HInx,ny , and W3=[Wm3]
I
m=1 in HIny ,+.

Proposition 6: Consider the MJLS described by (5) and the
following statements.

i) MJLS (5) is MSD.
ii) MJLS (5) is Strict-MSD.
iii) there exist W1=[Wm1]

I
m=1, Z=[Zm]Im=1 ∈ HInx,+,

W2=[Wm2]
I
m=1 ∈ HInx,ny , W3=[Wm3]

I
m=1 ∈ HIny ,+,

satisfying conditions (42).

Then, (i) ⇐⇒ (iii), (ii) =⇒ (iii). Furthermore, if A is non-
singular, we have (ii) ⇐⇒ (iii).

Proof: See Appendix.
Consider the following set of LMIs:

A∗ZA+γ̂mA∗W2L+γ̂mL∗W ∗
2A+γ̂mL∗W3L−Wm1≺0; (43a)[

Z W2

W ∗
2 W3

]
⪰ 0; (43b)

Z ⪰ Em(W1), Wm1 ≻ 0, Z ≻ 0, m ∈ Sη, (43c)

W1=[Wm1]
I
m=1 in HInx,+, Z in Fnx×nx

+ , W2 in Fnx×ny , W3

in Fny×ny
+ .

Proposition 7: Consider the MJLS described by (5) and the
following statements.

i) There exist W1=[Wm1]
I
m=1 in HInx,+, Z∈Fnx×nx

+ ,
W2∈Fnx×ny , W3∈Fny×ny

+ , satisfying conditions (43).
ii) MJLS (5) is Strong-MSD.
iii) MJLS (5) is Strong-Strict-MSD.

Then, (i) =⇒ (ii). Moreover, if A is non-singular,
(i) =⇒ (iii).

Proof: See Appendix.
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VIII. NUMERICAL CASE STUDY

This section presents the wireless OFC of an inverted pendu-
lum on a cart [27], controlled remotely over TCP-like lossy
sensing and actuation links. The considered cart and pendulum
masses are 0.5 and 0.2 kg, inertia about the pendulum mass
center is 0.006 kg·m2, distance from the pivot to the pendulum
mass center is 0.3m, coefficient of friction for the cart is
0.1. The system state is defined by x=

[
δx, δẋ, δϕ, δϕ̇

]′, with
δx(t)=x(t)−x⋆, δϕ(t)=ϕ(t)−ϕ⋆, where x is the cart position,
ϕ is the pendulum angle from vertical, x⋆ and ϕ⋆ are the
equilibrium point position and angle. The designed control
law aims to stabilize the pendulum in the upright position cor-
responding to unstable equilibrium point x⋆=0m, ϕ⋆=0 rad.
The optimal Markov jump output-feedback controllers (8) and
(9) have been applied to the discrete-time linear model derived
from the continuous-time nonlinear model by linearization.
The state-space model of the system is linearized around
the unstable equilibrium point and discretized with sampling
period Ts=0.01 s. The obtained system matrices can be found
in [19]. The process noise is characterized by the covariance
matrix E[wkw

∗
k]=Σw, with Σw=2·10−6I4. The state matrix A

is unstable since it has an eigenvalue 1.057, but it is easy to
verify that D∗D≻0, the pair (A,B) is controllable, while (A,L)

is observable, so the closed-loop system is asymptotically
stable if νk=1 and γk=1 ∀k. Moreover, the necessary conditions
for the existence of the MS stabilizing solution for the control
and filtering CAREs are satisfied. FSMC models with TPMs
in R4×4 describe the double-sided packet loss. These channels
are obtained by following the systematic procedure in [22]
that accounts for path loss, shadow fading, transmission power
control, and interference. The partitioning of the SINR range
is based on the values of PEP so that each SINR threshold
corresponds to a specific PEP value.
Detectability analysis. The proposed methodology is applied
to the study of the MSD conditions. Simulation results high-
light the existence of a limit case for detectability condi-
tions. When considering the distance between the transmitter-
receiver couple of interest d0=17.348m and distance be-
tween the interfering transmitter and receiver of interest
di,1=9.548m, the resulting SL TPM is given by

Q1 =


0.8855395 0.0184352 0.0603969 0.0356284
0.8825920 0.0187857 0.0617956 0.0368267
0.8820434 0.0188504 0.0620549 0.0370513
0.8806549 0.0190134 0.0627101 0.0376216

 .

The probabilities of receiving the packet in each mode of
the SL are denoted by γ̂1 = [0.005, 0.5000509, 0.9237605, 1].
Conditions (42) are satisfied. From Proposition 6, the system
is MSD and Strict-MSD. As far as strong conditions (43)
go, they are not satisfied. From the spectral radius analy-
sis, ρ (V)=ρ (T )=0.999999983 with Markovian filtering, and
ρ (V)=ρ (T )=1.000000074 with the Bernoullian filtering. In
this case, the condition γ̂ >γmax from [4, Th. 5.6] is satisfied.
However, the system is unstable with the Bernoullian filtering
because the system is neither Strong-MSD nor Strong-Strict-
MSD. This limit case reveals that the Bernoullian OFC may
fail in making the closed-loop system MSS when strong
detectability conditions are not satisfied, while the Markovian

OFC achieves this aim over the FSMCs.
Stabilizability analysis. The MS stabilizability analysis is
presented through a limit case: consider d0=17.348m and
di,2=10m. Then, the AL TPM is

P2 =


0.8647302 0.0208232 0.0701174 0.0443292
0.8615749 0.0211698 0.0715631 0.0456922
0.8609554 0.0212373 0.0718457 0.0459616
0.8593737 0.0214086 0.0725659 0.0466518

 .

The probabilities of receiving the packet in each mode of
the AL are given by ν̂2=[0.006, 0.5003405, 0.9248986, 1]. Thus,
ρ(L̂)=1.000388084 (with L̂ defined in (44)) using the Bernoul-
lian control gain, while the spectral radius ρ(L̂)=0.996248733

with the Markovian mode-dependent control gain. This case
highlights that even though the condition ν̂ >νc from [4,
Th. 5.6] is satisfied, the system is unstable with the Bernoullian
controller because the system is not Strong-MS stabilizable (re-
call Definition 7), see also Remark 24. The Bernoullian control
law is not able to make the closed-loop system MSS, while
the Markovian control achieves this aim. Varying distances
di between the interfering transmitter and receiver of interest
positioned at d0=17.348m from its transmitter, we distinguish
four cases: C.A (di≤9.547m), C.B (di = 9.548m), C.C (di
going from 9.549m to 12.100m), and C.D (di≥12.101m).
Table I provides insights on the detectability and stabilizability
for each of these cases: the check mark indicates that the
notion holds, while the cross mark reveals that its required
conditions are not satisfied.

Remark 24: The results presented in this paper are more
general with respect to the ones by Schenato et al. [4]. As
also pointed out in the detectability and stabilizability analysis,
even though in this example the conditions by Schenato et
al. are satisfied, the system is not MSS with the Bernoullian
mode-independent controller. This is because Strong MS sta-
bilizability and Strong-MSD are not satisfied.
Performance analysis and comparison. Consider distances
d0=17.348m, di,3=14m (corresponding to the case C.D in
Table I) and covariance matrix Σw described before. The
performance indexes obtained by the Markovian LO and
CE are J∗

L=0.0001109 and J∗
C =0.0000746, respectively. The

performance index obtained by the Bernoullian observer is
J∗
B=209.8934328. The reported performance indexes highlight

the fact that the presented mode-independent estimation tech-
niques are easier to implement, but their average cost is larger
than the one obtained by the Markovian filtering. The spectral
radius of T and V are the same for both mode-dependent
Markovian filters because these estimators are equivalent at
the steady-state, see Remark 11. However, the advantage of
the CE compared to the LO is that it involves the most recent
measurement in the estimation, yielding a smaller performance
index. Fig. 5 provides the closed-loop mean square state
trajectories obtained with 1000 independent trajectories. As
the reader may notice, the CE leads to closed-loop mean
square state trajectory that remain far below the closed-
loop mean square state trajectory provided by LO. Consider
the scenario with distances d0=17.348m, di,3=14m, where
Σw = qq′, with q = [0.003, 1,−0.005,−2.150]′ [4]. This case is
reported in Fig. 4 to emphasize the performance differences
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Fig. 5. Mean square state trajectories in closed-loop in
• blue obtained with the Markovian LO;
• red obtained with the Markovian CE;
• dashed blue obtained with the Bernoullian LO;
• dashed red obtained with the Bernoullian CE.

existing between the LO and the CE. The first difference can
be individuated in the resulting performance index J∗

L = 65

for the LO, and J∗
C = 43 for the CE. The performance index

shows that the cost achieved by the LO is higher with respect
to the one achieved by the CE, see also Remark 18. Moreover,
Fig. 4 highlights the behavior of the error trajectories for each
observer. After the transient, the error trajectories obtained
by the CE become smooth faster with respect to the error
trajectories obtained by the LO, which takes 20 samples to
become smooth.

IX. CONCLUSION

This paper presents estimation techniques and detectability
conditions for WCNs modeled via MJLSs (under TCP-like
communication scheme). The resulting output-feedback con-
trol over wireless medium finds applications in industrial
automation, telesurgery, smart grids, and intelligent transporta-
tion, where communication non-idealities must be considered
to guarantee acceptable closed-loop performance.We general-
ize the results from [4] by using the Markov modeling of
the wireless channel and introducing the stabilizability and
detectability conditions accounting for the communication link
mode, see also Remark 24. As future developments, we plan
to investigate the same WCN scenario under a UDP-like
communication scheme.

APPENDIX
Technical preliminaries

Since, for finite-dimensional linear spaces, all norms are
equivalent, [28, Th. 4.27] from a topological viewpoint, as
vector norms we use variants of vector p-norms. For what
concerns the matrix norms, we use ℓ1 and ℓ2 norms [29,
p. 341], which treat nr×nc matrices as vectors of size nrnc,
and use one of the related p-norms. The definition of ℓ1 and ℓ2
norms is based on the operation of vectorization of a matrix,
vec(·), which is further used in the definition of the operator
φ̂(·), to be applied to any block matrix, e.g., Φ=[Φm ]Cm=1:
φ̂(Φ)≜ [vec(Φ1), . . . , vec(ΦC)]

′. The linear operator φ̂(·) is a
uniform homeomorphism, its inverse operator φ̂−1(·) is uni-
formly continuous [30], and any bounded linear operator in
B(FCnr×nc) can be represented in B(FCnrnc) through φ̂(·).

A. Mode-dependent estimation techniques
Proof: [Proposition 1] Define matrices Λ1 ≜ NC

and Λ2 ≜ N ∗C∗, with C and N in (23). Then,
ρ (Λ1) = ρ (Λ2). For all S = [Sm]Im=1 in HInx ,
φ̂ (V (S)) = Λ1φ̂ (S) , φ̂ (L (S)) = Λ2φ̂ (S), see, e.g., [11,
Rem. 3.5], and thus, (i) follows. By setting, for all m ∈ Sη ,
Γ̂m0 = Γm0, Γ̂m1 = Γm1, and Λ3 ≜ CN the following
equalities hold: ρ(Λ1) = ρ(Λ2) = ρ(Λ3). Recalling that
φ̂(T (S)) = Λ3φ̂(S), ∀S ∈ HInx , condition (ii) follows.

Proof: [Proposition 2] Applying (24)-(25), and (11), the
assumptions on noise sequence, the product GH∗=Onx , (7)-
(6), the proof is straightforward, see [19] for more details.

Proof: [Proposition 3] Consider the error system (15).
Recall the definition (28) of m(k+1), for k∈N. By assumption
(a.3), applying the property E [wk]=Onw , the definitions of
transition probability and of γ̂m, m∈Sη , the expression of
m(k+1) in (31) follows. Consider the definition (29) of
Z(k), for k∈N. By applying assumption (a.3), the properties
E [wk]=Onw , E [wkw

∗
k]=Inw in (6), GH∗=0 in (7), definitions

of transition probability and of γ̂m, the recursive expression of
Zn(k+1), for m,n ∈ Sη , follows. Consider T and Ô defined
in (18) and (22), respectively. By setting Γ̂m1=A+AM̂mL,
Γ̂m0=A, M̂=[M̂m]Im=1, for m∈Sη , π(k)=[πm(k)]Im=1, (31)
follows, completing the proof.

Proof: [Proposition 4] Assume that MJLS (5) is Strict-
MSD. Then, there exists a mode-dependent filtering gain
M̂n ∈ Fnx×ny such that ρ(T ) < 1, with T ∈ B(HInx) in (18),
for Γ̂n1=A+AM̂nL, Γ̂n0=A, n ∈ Sη . Pick the filtering gain
M̌n = AM̂n ∈ Fnx×ny . By setting Γn1 = A+ M̌nL, Γn0 = A,
we have Γ̂n1 = Γn1 and Γ̂n0 = Γn0. Consider now the operator
V from (20), for Γn1 and Γn0 defined above. By Proposition 1,
ρ(V)=ρ(T ), which implies ρ(V)<1. Thus, (5) is MSD.

Proof: [Theorem 1] The implication (i) =⇒ (ii) follows
from the Schur complement [11, Lemma 2.23]. On the other
hand, assume that (ii) holds. By the optimality of the solution
of (35) and the MSD of (5), (i) follows. Moreover, the
solutions of (35) and (34) coincide, see [19] for more details.

Proof: [Theorem 2] Assume that Ŷ =
[
Ŷn

]I
n=1

is a MS
stabilizing solution for filtering CAREs (34), so that system
(5) is MSD, with M̌n = Mn(Ŷ), n∈Sη . By some technical
results from [19], we have the existence of a maximal solution
Y+ ∈ M, satisfying Y+ = Y(Y+), such that Ŷ −Y+ ⪰ 0 and
Ŷ −Y+ ⪯ 0. Thus, Ŷ = Y+. See [19] for more details.

The following result proves the equivalence of the two
estimation techniques for the MSS.

Proof: [Lemma 1] Assume the statement (i) holds. Set
Y(0) = [Yn(0)]

I
n=1 ∈ HInx,+, ∀Z(0) = [Zn(0)]

I
n=1 ∈ HInx,+,

as Yn(0) = Ân(Z(0),π(0))− B̃n(Z(0),π(0)), with
B̃n(Z(0),π(0)) ≜ γ̂nĈn(Z(0))R̂−1

n (Z(0),π(0))Ĉ∗n(Z(0)). By
(i), the limit for k → ∞ of Y(k) converges to Y in HInx,+

satisfying Y = Y(Y). Then, for n ∈ Sη and k ∈ N, the follow-
ing equalities hold: Yn(k) = Ân(Z(k),π(k))− B̃n(Z(k),π(k)),
with B̃n(Z(k),π(k)) ≜ γ̂nĈn(Z(k))R̂−1

n (Z(k),π(k))Ĉ∗n(Z(k)),
and Zn(k + 1) = Dn(Y(k)). This implies that the limit for
k → ∞ of Z(k) converges to D(Y) = Z(Z).
Assume that (ii) holds. Set Z(0)=[Zm(0)]Im=1 ∈ HInx,+,
∀ Y(0)=[Ym(0)]Im=1 ∈ HInx,+, as Z(0)=D(Y(0)).
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From (ii), limk→∞ Z(k)=Z, with Z = Z(Z). Then, for
m ∈ Sη , Ym(k + 1) = Âm(Z(k),π(k))− B̃m(Z(k),π(k)) and
Zn(k) = Dn(Y(k)), implying limk→∞ Y(k) = Y, Y = Y(Y).
Assume that Y ∈ M is the MS stabilizing solution of
the filtering CAREs Y = Y(Y). Then, Mn(Y) defined
by (32) is such that the spectral radius ρ(V) < 1, with
V∈B(HInx) defined in (20) for Γn1=A+Mn(Y)L, Γn0=A,
and n ∈ Sη . By setting Zn=Dn(Y), the following equality
holds for any n∈Sη: Mn(Y) = AM̂n(Z). Considering
Γ̂n1 = A+AM̂n(Z)L and Γ̂n0 = A, we obtain Γ̂n1 = Γn1 and
Γ̂n0 = Γn0. By Proposition 1, ρ(V) = ρ(T ), and, consequently,
ρ(T ) < 1. Moreover, the optimal performance index achieved
by the CE is J∗

C =
∑I

n=1 tr(Zn).
In the following, all mathematical preliminaries and motiva-
tions leading to the separation principle are illustrated concern-
ing the output-feedback controller designed with the Marko-
vian LO. A reduced version of the proof is reported in [19].
Define, for k∈N, ℓ, i, j ∈Sθ, wℓi(k) ≜ E[xk1{θk−1=ℓ,θk=i}],
Wℓi(k)≜E[xkx∗k1{θk−1=ℓ,θk=i}] and set w(k) ≜ [wℓi(k)]

N
ℓ,i=1,

W(k) ≜ [Wℓi(k)]
N
ℓ,i=1. For V = [Vij ]

N
i,j=1 ∈ FNnx×Nnx , de-

fine the operator L̂(·) = [L̂ij(·)]Ni,j=1 ∈ B(FNnx×Nnx), with
L̂ij(V) ≜

{
A
∑N

l=1
VliA

∗ + ν̂iB
∑N

l=1
FlVliF

∗
l B

∗+

ν̂iB
∑N

l=1
FlVliA

∗ + ν̂iA
∑N

l=1
VliF

∗
l B

∗
}
pij . (44)

For Y=[Ym]Im=1 ∈ HInx , β=[βℓi]
N
ℓ,i=1∈RN×N , i, j ∈ Sθ, de-

fine the operator H(·, ·) : HInx × RN×N → FNnx×Nnx as
H(Y,β) ≜ [Hij(Y,β)]Ni,j=1, with

Hij(Y,β)≜ ν̂iB
∑N

ℓ=1
βℓiFℓ(

∑I

m=1
Ym)F ∗

ℓ B
∗pij+GG∗βij .

Proposition 8: Consider the MJLS (5) and the closed-loop
system dynamics (37). Then, ∀ k ∈ N, i, j ∈ Sθ,

Wij(k + 1) = L̂ij(W(k)) +Hij(Y̌(k), ϖ̃(k))−

2R
{
ν̂iB

∑N

ℓ=1
Fℓ

(∑I

m=1
m̌m(k)

)
w∗

ℓi(k)A
∗+

ν̂iB
∑N

ℓ=1
Fℓ

(∑I

m=1
m̌m(k)

)
w∗

ℓi(k)F
∗
ℓ B

∗
}
pij . (45)

Proof: From (37) and (11), recalling the definition of L̂
in (44), by assumptions (a.2)− (a.3), applying (6) and the
independence of sequences θk and ěk,
Wij(k + 1) = L̂ij (W(k))+(
ν̂iB

∑N

ℓ=1
ϖ̃ℓi(k)FℓE [ěkě

∗
k]F

∗
ℓ B

∗ +GG∗
∑N

ℓ=1
ϖ̃ℓi(k)

− ν̂i2R
(
B
∑N

ℓ=1
FℓE [ěk]w

∗
ℓi(k)A

∗+

B
∑N

ℓ=1
FℓE [ěk]w

∗
ℓi(k)F

∗
ℓ B

∗
))

pij ,

and thus, equation (45) follows. The proof is complete.
Proof: [Theorem 3] Assume that (ii) holds. Then, by

Definition 2, there exists a mode-dependent control gain Fℓ,
ℓ ∈ Sθ, that makes the dynamics of xk MSS. Consequently, by
[13, Prop. 3], ρ(L̂) < 1, with L̂ in (44). By Definition 4, there
exists a mode-dependent filtering gain M̌n, n ∈ Sη , such that
ρ(V)<1, with V ∈ B(HInx) in (20), for Γn1 = A+ M̌nL and
Γn0 = A. By Proposition 2,

Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k)). (46)

Since ρ(V)<1, by (a.4), from (46), limk→∞ Y̌(k) = Y̌,

Y̌ = V(Y̌) +O(M̌,π∞), (47)

and thus, for i, j ∈ Sθ, limk→∞Hij(Y̌(k), ϖ̃(k))=Hij(Y̌, ϖ̃∞).
From (27) and (47), by [11, Propositions 3.6 and 3.36],
we obtain limk→∞m̌(k)=OInx . By Proposition 8, for
i, j ∈ Sθ, limk→∞ Wij(k + 1)= L̂ij(W)+Hij(Y̌, ϖ̃∞), and
thus, there exists W = [Wij ]

N
i,j=1, with Wij ∈ Fnx×nx

+

satisfying Wij = limk→∞ Wij(k). Moreover, by [13, Prop. 2],
limk→∞ wℓi(k) = wℓi ∈ Fnx , ℓ, i ∈ Sθ. Therefore, the closed-
loop system is MSS by Definition 1, implying (i). To prove
the converse of the theorem, assume now that (i) holds. Then,
there exists W=[Wij ]

N
i,j=1, with Wij = limk→∞ Wij(k).

By Proposition 8, Wij , i, j ∈ Sθ, can be written as follows.
Wij = limk→∞ Wij(k + 1), with Wij(k + 1) in (45). Thus,
there exists Y̌ ∈ HInx,+, such that limk→∞ Y̌(k) = Y̌,
with Y̌ satisfying (47). Therefore, the error system (11) is
MSS. By [11, Th. 3.33, Th. 3.9], we have that condition
(ii-a) holds. Moreover, by [11, Propositions 3.6 and 3.36],
limk→∞ m̌(k) = OInx , and thus, the following equality holds
for i, j ∈ Sθ, Wij= L̂ij (W)+Hij(Y̌, ϖ̃∞), implying that
the mode-dependent control gain Fℓ, ℓ∈Sθ, stabilizes the
dynamics (37) in the MS sense, i.e., condition (ii-b) holds.
The detailed proof of the separation principle concerning
the OFC based on the CE is presented in the following.
Define Ĥ(·, ·, ·) : HInx × RN×N × RI → FNnx×Nnx , for
Z=[Zm]Im=1 ∈ HInx ,β=[βℓi]

N
ℓ,i=1 ∈ RN×N ,σ=[σm]Im=1 ∈ RI ,

i, j ∈ Sθ, as Ĥ(Z,β,σ) ≜ [Ĥij(Z,β,σ)]
N
i,j=1, with

Ĥij(Z,β,σ) ≜
∑N

ℓ=1

∑I

m=1

{
βℓiν̂iBFℓZmF ∗

ℓ B
∗+

βℓiν̂iγ̂mBFℓM̂mLZmL∗M̂∗
mF ∗

ℓ B
∗+

βℓiν̂iγ̂mBFℓZmL∗M̂∗
mF ∗

ℓB
∗+βℓiν̂iγ̂mBFℓM̂mLZmF ∗

ℓB
∗+

βℓiσmGG∗+βℓiσmν̂iγ̂mBFℓM̂mHH∗M̂∗
mF ∗

ℓ B
∗
}
pij . (48)

Proposition 9: Consider the MJLS (5) and the closed-loop
system dynamics (39). Then, ∀ k ∈ N, i, j ∈ Sθ,

Wij(k + 1) = L̂ij(W(k)) + Ĥij (Z(k), ϖ̃(k),π(k))+

2R
(∑N

ℓ=1

∑I

m=1

{̂
νiBFℓmm(k)w∗

ℓi(k)A
∗+

ν̂iγ̂mBFℓM̂mLmm(k)w∗
ℓi(k)A

∗+

ν̂iBFℓmm(k)w∗
ℓi(k)F

∗
ℓ B

∗+

ν̂iγ̂mBFℓM̂mLmm(k)w∗
ℓi(k)F

∗
ℓ B

∗})pij , (49)

where L̂ij and Ĥij are defined in (44) and (48), respectively.
Proof: From (39) and (15), recalling L̂ operator in

(44), by assumptions (a.2)− (a.3), applying the properties
E[wk] = Onw , E[wkw

∗
k] = Inw , in (6), the definition of transi-

tion probability, the independence of sequences {ek} and {θk}
(see Remark 12), equation (49) follows.

Proof: [Theorem 4] Assume (ii) holds. Then, there
exists a mode-dependent control gain Fℓ, ℓ ∈ Sθ, that
makes the dynamics of xk MSS. Consequently, by
[13, Prop. 3], ρ(L̂) < 1, with L̂ in (44). By Defi-
nition 5, there exists a mode-dependent filtering gain
M̂n, n ∈ Sη , such that ρ(T ) < 1, with T ∈ B(HInx) in
(18), Γ̂n1 = A+AM̂nL and Γ̂n0 = A. By Proposition 3,
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Z(k + 1) = T (Z(k)) + Ô(M̂,π(k)). Thus, from ρ(T ) < 1 and
the assumption (a.4), limk→∞ Z(k) = Z ∈ HInx,+, with

Z = T (Z) + Ô(M̂,π∞). (50)

Therefore, limk→∞ Ĥij(Z(k), ϖ̃(k),π(k))=Ĥij(Z, ϖ̃
∞,π∞),

i, j ∈ Sθ. From (31) and (50), by [11, Propositions 3.6
and 3.36], limk→∞ m(k) = OInx . By Proposition 9,
limk→∞ Wij(k+1)= L̂ij(W)+Ĥij(Z, ϖ̃

∞,π∞), i, j ∈ Sθ.
Thus, there exists W =

[
Wij

]N
i,j=1

, with Wij ∈ Fnx×nx
+ ,

satisfying, for i, j ∈ Sθ, Wij = limk→∞ Wij(k + 1). Moreover,
by [13, Prop. 2], we get limk→∞ wℓi(k) = wℓi ∈ Fnx , ℓ, i ∈ Sθ.
Therefore, the closed-loop system is MSS, i.e., (i) holds.
To prove the converse statement, assume (i) holds. Then,
there exists W = [Wij ]

N
i,j=1, with Wij = limk→∞ Wij(k). By

Proposition 9, Wij , i, j ∈ Sθ, satisfies (49), with Z(k) satisfying
(31). This implies that there exists Z∈HInx,+, such that
limk→∞ Z(k)=Z, with Z satisfying (50). Therefore, the error
system (15) is MSS, and, by [11, Th. 3.33, Th. 3.9], condition
(ii-a) holds. Moreover, by [11, Propositions 3.6 and 3.36],
we have that limk→∞m(k)=OInx . Thus, the following
equality holds for i, j∈Sθ: Wij= L̂ij (W)+Ĥij (Z, ϖ̃

∞,π∞),
implying that the mode-dependent control gain Fℓ, ℓ∈Sθ,
makes the dynamics (39) MSS, i.e., condition (ii-b) holds.

B. Proofs for the mode-independent output-feedback
This section reports the results on the mode-independent OFC.

Proof: [Proposition 5] Consider the MJLS (5). As-
sume that (5) is Strong-MSD. Then, there exists a mode-
independent filtering gain M̌b∈Fnx×ny , such that ρ(V)<1,
with V∈B(HInx) in (20), for Γn1=A+M̌bL, Γn0=A and
n∈Sη . Pick the mode-dependent filtering gain M̌n=M̌b and
consider V with Γn1=A+M̌nL and Γn0=A. The condition
ρ(V)<1 is again satisfied, and implication (i) holds. Assume
now that (5) is Strong-Strict-MSD. Then, there exists a mode-
independent filtering gain M̂b∈Fnx×ny , such that ρ(T )<1,
with T ∈B(HInx) in (18), for Γ̂n1=A+AM̂bL, Γ̂n0=A and
n∈Sη . For all m∈Sη , pick the mode-dependent filtering gain
M̂m=M̂b and consider T with Γ̂m1=A+AM̂mL and Γ̂m0=A.
The condition ρ(T )<1 is again satisfied, and the implication
Strong-Strict-MSD =⇒ Strict-MSD holds. Moreover, if (5) is
Strong-Strict-MSD, then, there exists a mode-independent fil-
tering gain M̌b = AM̂b, such that, setting Γn1 = A+ M̌bL and
Γn0 = A, the following equalities are satisfied: Γ̂n0 = Γn0,
Γ̂n1 = Γn1, for all n ∈ Sη . Consider now V, with Γn1, Γn0

defined above. By Proposition 1, ρ(V)=ρ(T ), which implies
ρ(V) < 1, and thus, Strong-Strict-MSD =⇒ Strong-MSD.

Proof: [Theorem 5] Condition (ii) follows from
[13, Th. 3], so we only need to prove condition (i).
By assumption, π∞ = [π∞

m ]Im=1 is the stationary distribu-
tion of the SL modes, and thus, π∞

n =
∑I

m=1 qmnπ
∞
m .

Moreover, the probability γ̊=
∑I

n=1 π
∞
n γ̂n can be writ-

ten as γ̊ =
∑I

m=1 π
∞
m

∑I
n=1 qmnγ̂n. By applying the prop-

erty
∑I

m=1 π
∞
m = 1, the filtering MARE (40) can be

rewritten as
∑I

m=1π
∞
m {Y b

∞−Åb(Y b
∞)+B̊b

m(Y b
∞)} =0, with

B̊b
m(Y b

∞) ≜
∑I

n=1 qmnγ̂n(C̊b(Y b
∞)R̊b(Y b

∞)−1C̊b∗(Y b
∞)), holding

for all π = [πm]Im=1, if and only if, for all m ≤ I,

Y b
∞ = Åb

(
Y b
∞
)
− ζmC̊b

(
Y b
∞
)
R̊b
(
Y b
∞
)−1 C̊b∗ (Y b

∞
)
, (51)

with ζm =
∑I

n=1 qmnγ̂n. Equation (51) is exactly equa-
tion (40), where, as required by the mode-independence,
Ym = Y b

∞, for all m ∈ Sη . This completes the proof.

Technical results concerning MSD are proved in the following.

Proof: [Proposition 6] Assume (i) holds. Then,
there exists a mode-dependent filtering gain M̌n ∈ Fnx×ny ,
n∈Sη , such that ρ(V)<1, with V∈B(HInx) in (20),
for Γn1=A+M̌nL and Γn0=A. Consider the operator
L∈B(HInx) in (19), with the same Γn1 and Γn0 given
for V. By Proposition 1, ρ(V)=ρ(L), and, therefore,
ρ(L)<1. By applying [11, Th. 3.9], we have that, for
V=[Vm]Im=1 ∈ HInx,+, Vm ≻ 0, m ∈ Sη , Lm(V)−Vm≺0.
Taking W1=V and Zm=Em (W1), condition (42c) is sat-
isfied. By choosing Wm2=ZmM̌m, Wm3=W ∗

m2Z
−1
m Wm2 and

substituting these expressions in Lm(V)−Vm, condition (42a)
follows. Recalling that Wm3 ⪰ W ∗

m2Z
−1
m Wm2, by the Schur

complement [11, Lemma 2.23], we get (42b). Thus, statement
(i) =⇒ (iii). Let us prove that (iii) =⇒ (i). Assume that
(iii) holds and choose the filtering gain as M̌m = Z−1

m Wm2.
Consider again the operator L defined above. From (42b), by
the Schur complement, we have Wm3⪰W ∗

m2Z
−1
m Wm2, and,

from (42c), Zm⪰Em(W1). Thus, by condition (42a), we get
Lm (W1)−Wm1≺0. By [11, Th. 3.9], ρ (L)<1. Consider the
operator V in (20), for Γm1=A+M̌mL, Γm0=A, and m∈Sη .
By Proposition 1: ρ(V)=ρ(L), and, consequently, ρ(V)<1.
Thus, the system (5) is MSD, and statement (i) holds.
Assume (ii) holds. Then, there exists a mode-dependent
filtering gain M̂n∈Fnx×ny , n∈Sη , such that ρ(T )<1, with
T ∈B(HInx) in (18), for Γ̂n1=A+AM̂nL and Γ̂n0=A, n∈Sη .
Consider the operator L∈B(HInx) in (19), with Γn1=Γ̂n1 and
Γn0=Γ̂n0, for all n ∈ Sη . By Proposition 1, ρ(T )=ρ(L), and,
therefore, ρ(L)<1. By applying [11, Th. 3.9], we have that,
for V=[Vm]Im=1∈HInx,+, Vm ≻ 0, m∈Sη , Lm(V)−Vm≺0.
By taking W1=V, Zm=Em(W1), condition (42c) is satis-
fied. By choosing Wm2=ZmAM̂m, Wm3=W ∗

m2Z
−1
m Wm2, and

substituting these expressions in Lm(V)−Vm, condition (42a)
follows. Recalling that Wm3⪰W ∗

m2Z
−1
m Wm2, by the Schur

complement condition (42b) is satisfied, and (iii) holds.
Let us prove that if the matrix A is non-singular, the converse
implication, i.e., (iii) =⇒ (ii), is true. Assume (iii) holds
and matrix A is non-singular. Then, the filtering gain can be
chosen as M̂m=A−1Z−1

m Wm2. Consider again the operator
L defined above. From (42b), by the Schur complement
(see [11, Lemma 2.23]), we have Wm3⪰W ∗

m2Z
−1
m Wm2 and,

from (42c), Zm ⪰ Em(W1). Thus, by condition (42a), we get
Lm(W1)−Wm1≺0 and, by [11, Th. 3.9], ρ(L)<1. Consider
the operator T in (18), with Γ̂n1=A+AM̂nL, Γ̂n0=A, and
n∈Sη . This implies that Γ̂n0=Γn0, Γ̂n1=Γn1, for all n∈Sη ,
and, by Proposition 1, ρ(T )=ρ(L). Therefore, ρ(T )<1, and
condition (ii) holds.

Proof: [Proposition 7] Assume that (43) holds for
some W1=[Wm1]

I
m=1∈HInx,+, Z∈Fnx×nx

+ , W2∈Fnx×ny ,
W3∈Fny×ny

+ , for all m∈Sη . Choose the filtering gain
as M̌b=Z−1W2 and consider L ∈ B(HInx) in (19), for
Γm1=A+M̌bL, Γm0=A, and m ∈ Sη . From (43b), by the
Schur complement, (see [11, Lemma 2.23]), we have that
W3⪰W ∗

2 Z
−1W2 and, from (43c), Em(W1)⪯Z, for all m∈Sη .
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Thus, by condition (43a), we obtain Lm(W1)−Wm1≺0. By
[11, Th. 3.9], it follows that ρ(L)<1. Consider the operator
V ∈ B(HInx) defined in (20), with Γm1=A+M̌bL, Γm0=A,
and m∈Sη . By Proposition 1, ρ(V)=ρ(L), and, consequently,
ρ(V)<1. Therefore, the MJLS (5) is Strong-MSD, and, thus,
the proof of the implication (i) =⇒ (ii) is complete.
Now, assume conditions (43) hold for some Z∈Fnx×nx

+ ,
W1=[Wm1]

I
m=1∈HInx,+, W2∈Fnx×ny , and W3∈Fny×ny

+ .
Recall that the matrix A is non-singular by assumption
and choose the filtering gain as M̂b=A−1Z−1W2. Con-
sider the operator L∈ B(HInx) in (19) with Γm1=A+AM̂bL,
Γm0=A, and m∈Sη . From (43b), by the Schur comple-
ment we have that W3⪰W ∗

2 Z
−1W2, and from (43c) we

have Em (W1)⪯Z, for all m∈Sη . Thus, by condition (43a),
we obtain Lm(W1)−Wm1≺0. By [11, Th. 3.9], ρ(L)<1.
Consider T ∈B(HInx) in (18), for Γ̂m1=A+AM̂bL, Γ̂m0=A,
and m∈Sη . This implies Γ̂m0 = Γm0 and Γ̂m1 = Γm1. By
Proposition 1, ρ(L)=ρ(T ), and, consequently, ρ(T )<1. Thus,
the system (5) is Strong-Strict-MSD.
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