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Abstract—The communication links connecting compo-
nents of wireless control systems may be affected by
packet losses due to time-varying fading and interference.
We consider a wireless control network with double-sided
packet losses: on the sensor–controller link (sensing link)
and the controller–actuator link (actuation link). We model
the sensing and actuation links as finite-state Markov chan-
nels (FSMCs). One time-step delay affects the actuation link
mode observation, while the sensing link mode observation
is not affected by any delay. In this article, we solve, as
our main contribution, the optimal output-feedback con-
trol problem in this FSMC setting (under a TCP-like com-
munication scheme) using two different state estimation
techniques, i.e., Luenberger observer and current esti-
mator, comparing the two methodologies and deriving a
separation principle for both the cases. We also derive
detectability conditions guaranteeing the existence of an
optimal observer, either Luenberger or current.

Index Terms—Finite-state Markov channels (FSMCs),
separation principle, wireless control networks (WCNs).

I. INTRODUCTION

W IRELESS control networks (WCNs) consist of com-
putational units, actuators, and sensors connected via

wireless communication links that may be affected by packet
losses. In wireless control systems literature, the packet dropouts
have been modeled either as deterministic (in terms of time
averages or worst case bounds on the number of consecutive
packet losses; see, e.g., [1], [2], and [3]) or stochastic phenom-
ena. In the stochastic framework, many works in the literature
assume that memoryless packet drops and, thus, dropouts are
realizations of a Bernoulli process (see [4], [5], [6], and [7]).
Other works consider more general correlated (bursty) packet
losses and use a transition probability matrix (TPM) of a finite-
state stationary Markov chain (see, e.g., [8] and references
therein) to describe the stochastic process governing packet
dropouts (see [4], [9], and [10]). In these works, WCNs with
missing packets are modeled via time-homogeneous Markov
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jump linear systems (MJLSs) [11]. Double-sided packet losses
have been already investigated, for instance, in [3] and [12],
with arbitrary packet loss process [3], or Markovian [12]. These
works summarize the packet losses on both links. The significant
difficulty of this setting arises from a combined effect of two
link packet losses possibly resulting in long periods, in which
the controller and the actuator cannot simultaneously receive
new data (see also Remark 1). However, a simple Markov chain
model for packet losses on wireless channels used in WCNs
literature is not exhaustive since the occurrence of packet losses
also depends on the operational mode of the communication
channel [8]. The finite-state stationary Markov channel (FSMC)
model approximates the channel mode transitions through a
Markov chain and incorporates a specific packet error distri-
bution information into each mode. FSMC is an essential model
because wireless communication system designers traditionally
use this mathematical abstraction of the wireless channel for
modeling error bursts in fading channels to analyze and improve
performance measures in the physical or media access control
layers. Moreover, several receivers’ channel state estimation and
decoding algorithms rely upon FSMC models [8]. Bursts of
packet losses cannot be modeled by Bernoulli processes, which
is the main limit of the output-feedback control (OFC) strategy
based on the Bernoulli channel. Indeed, the Bernoullian model
is less accurate than the FSMC model, and thus, bursts of packet
losses may cause unstable behavior without the possibility of
recovery, as illustrated in Section VIII. Thus, the existing sta-
bilizability and detectability notions [4] are not suitable for the
general FSMC scenario (see Remark 14). This work overcomes
this limitation by solving the OFC problem over FSMCs and
providing novel stabilizability and detectability conditions. The
investigated infrastructure relies on a TCP-like architecture [4],
implying that the communication between the controller and the
actuators is characterized by acknowledgment (ack) messages.
This article generalizes the results in [4] to the FSMC setting also
proving that the fundamental separation principle still remains
valid when ack messages deliver the state of the channel and
outcome of related transmission. Ack messages are crucial here
because without them, the separation between estimation and
control is impossible even in Bernoullian setting. Concerning
the transmission on the actuation link (AL), the controller is
the transmitter: specifically, the transmitter cannot know the
outcome of the transmission before sending the message. This
is the reason why the controller receives the ack message, as
well as the current mode of the channel only after a time-step
delay [13], while this delay does not affect the sensing link (SL).
In modern communication systems, the channel state estimation
is always performed through the receiver. Therefore, on the SL,
the controller (i.e., the receiver) is able to know the outcome of
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the transmission and the Markov mode of the channel. The OFC
for MJLSs has been investigated in [11] and [14], with the same
Markov chain driving both the dynamics of the plant and the one
of the observer without any delay in the channel mode observa-
tion. Optimal linear–quadratic regulation [15] with one time-step
delay on AL mode has been investigated in [10]. In [16], the
Kalman filter (KF) is adopted for a single simplified Gilbert
channel modeled by a Markov chain with two states. This result
cannot be applied to general Markov channel scenarios that re-
quire 2N modes with N > 2: N channel states result, e.g., from
the signal-to-interference-plus-noise ratio (SINR) partitioning,
and each state is associated with a binary symmetric channel
(see [8]). Thus, 2N modes derive from the general Markov
channel mathematical model. Other estimation techniques are
H2 and H∞ estimation: in [9], suboptimal filters are obtained
for the case of cluster availability of the operational modes. It
is well known that for the case in which the information on the
output of the system and on the Markov chain is available at
each time step, the best linear estimator of the state is the KF
(see [11, Remark 5.2] and [16]). An offline computation of the
KF is inadvisable [17], as discussed more in detail in Section IV
(see Remark 9). On the other hand, an online computation of the
KF requires a significant computational burden. For this reason,
we consider a different class of estimators, for which we can
precompute the filtering gains offline. We present two infinite
horizon (IH) minimum mean square Markov jump filters [11,
Ch. 5.3]: the first one with a Luenberger observer (LO) and the
second one using the current estimator (CE) [18, Ch. 8.2.4].
These estimators use different communication and computation
timing sequences and offer different performance levels (see
Section IV).

A. Preliminary Versions

Preliminary parts of this work have been presented at the 58th
IEEE Conference on Decision and Control [13] and at the 2021
American Control Conference [19]. Specifically, Zacchia Lun
and D’Innocenzo [13] have introduced the controllability notion
over one step delayed AL mode observation, while Impicciatore
et al. [19] concern the OFC with double-sided packet losses and
detectability notions for the LO. The improvement with respect
to [13] is the double-sided packet losses, while the novelty with
respect to [19] is the introduction of the CE together with a
comparison between the two methodologies. The CE provides
better performance, but it requires more restrictive constraints
to be satisfied. Different computation timing sequences are used
by the two estimators: the one concerning the CE presents more
restrictive physical constraints (see Remark 13). The theoretical
existence of these two estimators is a problem addressed using
different detectability notions that have been introduced for the
FSMC scenario and that are presented in this work with the
aim of finding suitable conditions guaranteeing the existence of
an observer (either Luenberger or current). Particularly, condi-
tions guaranteeing the weakest detectability are necessary and
sufficient, while requirements ensuring the strongest detectabil-
ity are only sufficient. Moreover, we present the detailed proofs
of the separation principle for LO and CE. Finally, we report a
more general case study with respect to the one in [19], providing
several propagation environments showing in which cases it is
possible to conclude the existence of one of the two observers.

B. Article Contribution

The contributions of this article are listed as follows.
1) First, the FSMC is introduced into the wireless network

control framework. The FSMC is widely used for the
analysis and design of telecommunication systems and
allows for accurate modeling of errors and bursts of packet
losses.

2) The communication timing and computation and trans-
mission delays are explicitly considered. This leads to
two different estimation strategies: the LO and the CE,
each one with its feasibility conditions.

3) The separation principle validity is proved for both the
considered estimators in the general FSMC setting.

4) Four different detectability notions (presented from the
weakest to the strongest one; see Remark 22) are intro-
duced with the aim of providing a suitable theoretical
basis for the formal description of the filtering problems.
The aforementioned detectability notions are instrumen-
tal for the guarantees of the separation principle for the
general FSMC scenario (see Remark 14).

5) The presented results are illustrated in a case study con-
cerning an inverted pendulum on a cart described in
Section VIII.

C. Article Organization

The rest of this article is organized as follows. Section II
presents the WCN scenario and the information flow on the
AL and the SL, respectively. Section III describes the optimal
OFC problem in our setting. Estimation techniques are described
and compared in Section IV, and the corresponding observer
stability analysis is provided in Section V [with the solutions
of the filtering coupled algebraic Riccati equations (CAREs)].
Section VI states the separation principle derived for both the
LO and the CE. Section VII presents the mode-independent
output-feedback controller with suitable detectability conditions
from the weakest to the strongest ones. A numerical case study is
shown in Section VIII. Finally, Section IX concludes this article.
Proofs of lemmas and theorems are reported in the Appendix.

D. Notation and Preliminaries

In the following, N denotes the set of natural numbers corre-
sponding to the nonnegative integers, R denotes the set of reals,
while F indicates the set of either real or complex numbers. The
absolute value of a number is denoted by | · |. We recall that every
finite-dimensional normed space over F is a Banach space [20]
and denote the Banach space of all bounded linear operators
of Banach space X into Banach space Y by B(X,Y). We set
B(X,X) � B(X). On denotes the vector containing all zeros
of length n. In indicates the identity matrix of size n, while On

represents the matrix of zeros of size n× n. The transposition is
denoted by the apostrophe, the complex conjugation by an over-
bar, the conjugate transposition by superscript ∗.Fn×n

∗ andFn×n
+

represent the sets of Hermitian and positive semidefinite matri-
ces, respectively. For any positive integers C, r, n, and m, we
define the following sets: HCr,n is the set of all K = [Km]Cm=1,
Km inFr×n,HCn,∗ is the set of allK = [Km]Cm=1,Km inFn×n

∗ ,
and H

Cn,+ is the set of all K in H
Cn,∗, with Km ∈ F

n×n
+ . We
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Fig. 1. Remote output-feedback architecture.

set HCn = H
Cn,n. We denote by ρ(·) the spectral radius of a

square matrix (or a bounded linear operator), i.e., the largest
absolute value of its eigenvalues, and by ‖ · ‖ either any vector
norm or any matrix norm. We denote by⊗ the Kronecker product
defined in the usual way (see, e.g., [21]) and ⊕ the direct sum.
Notably, the direct sum of a sequence of square matrices(Φi)

C
i=1

produces a block diagonal matrix having its elements, Φi, on the
main diagonal blocks. Then, tr(·) indicates the trace of a square
matrix. For two Hermitian matrices of the same dimensions, Φ

1

and Φ
2
, Φ

1
� Φ

2
(respectively Φ

1
	 Φ

2
) means that Φ

1
− Φ

2

is positive semidefinite (respectively, positive definite). Finally,
E(·) stands for the mathematical expectation of the underlying
scalar-valued random variable (RV), and R(·) indicates the real
part of the elements of a complex matrix.

Through this article, we will extensively use the acronyms
provided in the following: MS stands for mean-square, MSS
stands for MS stable or MS stability, whose formal definition
is provided in Section II. Moreover, MSD stands for MS de-
tectability or MS detectable. The formal definition is provided
in Section II.

II. PROBLEM FORMULATION

Consider the remote architecture depicted in Fig. 1. The
discrete-time equivalent system is G:{

xk+1 = Axk +Buc
k +Gwk

ysk = Lxk +Hwk
(1)

where the system state xk ∈ F
nx and the system output ysk ∈

F
ny , k ∈ N, are obtained through an analog-to-digital converter

(A/D block in Fig. 1) with sampling period T . For k ∈ N,
wk ∈ R

nw is a sequence of independent identically distributed
Gaussian RVs with zero mean. A, B, G, L, and H are system
matrices of appropriate sizes. As in [4], we consider an unstable
system state matrix A since otherwise a stabilizing OFC would
not be required. G is controlled remotely by a digital output-
feedback controller, which receives the measurements ysk on
the wireless SL and sends the control inputs over the wireless
AL. The received digital control law uc

k ∈ F
nu is converted to

an analog signal by a digital-to-analog converter (D/A block in
Fig. 1) based, for instance, on zero-order hold, so that the analog
control input can be applied to the continuous-time process.

Remark 1: Fig. 1 reports the scheme of a WCN infrastructure
with possible packet losses occurrence on both the SL and the
AL. The main challenge of this scenario arises from a combined
effect of two-link packet losses possibly resulting in long periods
in which the controller and the actuator cannot simultaneously
receive new data. The scheme is a TCP-like communication [4]
based on ack messages. Specifically, the controller receives the
ack of the transmission on the connection actuators–controller
(see Fig. 1). Packet losses over this connection are negligible

since the probability of a packet loss for ack messages is very
small in practical applications.

A. Wireless Link

This section describes single-hop wireless communication
links modeled by FSMCs. The sequence {νk}k∈N models the
packet arrival process on the AL. The value of the RV νk is zero
whenever the control packet is lost and νk = 1 if the control
packet is correctly delivered, i.e., νk ∈ Sν � {0, 1}, for any
k ∈ N. Analogously, the sequence {γk}k∈N describes the packet
arrival process on the wireless SL. Particularly, γk = 0 if the
sensing packet is lost and γk = 1 if it is successfully delivered,
i.e., for allk ∈ N,γk ∈ Sγ � {0, 1}. The processesνk andγk are
collections of binary RVs, and the probability of having a packet
loss or a correct packet transmission over each link depends on
its SINR. The SINR is determined by propagational environment
and related physical phenomena [22]. The SINR is a stochastic
process and can be abstracted by a Markov chain. Each Markov
mode is associated with a certain packet error probability (PEP).
We consider the stochastic basis (Ω,F , {Fk}k∈N,P), where Ω
is the sample space, F is the σ-algebra of (Borel) measurable
events, {Fk}k∈N is the related filtration, and P is the probability
measure. SL and AL modes are the output of the Markov chains
η : N× Ω → Sη ⊆ N and θ : N× Ω → Sθ ⊆ N, respectively.
Indeed, the Markov modes of {ηk}k∈N and {θk}k∈N belong to
finite sets Sη = {1, 2, . . . , I} and Sθ = {1, 2, . . . , N}, respec-
tively.

Remark 2: Previous works, such as [4] and [5], do not con-
sider the communication channel mode, but actually the receiver
has access to this information, by performing a channel state
estimation [23]. The novelty of this article lies within the OFC
in the FSMC setting.

Moreover, the described Markov chains are characterized
by time-invariant TPMs P = [pij ]

N
i,j=1 (for {θk}) and Q =

[qmn]
I
m,n=1 (for {ηk}), respectively. Each TPM may be obtained

by integrating the joint probability density function of the SINR
over two consecutive packet transmissions and over the desired
regions [8], [22]. The TPM values may also be validated through
the empirical data from a measurement campaign for calibrating
the theoretical model parameters. The uncertainties in TPM val-
ues neglected in this work can then be addressed via a polytopic
model (see, e.g., [24] and the references therein).

Remark 3: The network-induced communication delays due
to multiple path routing and time-varying processing delays in
relay nodes of multihop networks are not an issue for single-hop
SL and AL with scheduled medium access considered in this ar-
ticle and extensively used in delay-sensitive control applications
relying, e.g., on the low-latency deterministic network mode of
IEEE 802.15.4e.

The entries of TPMs P and Q are defined as

pij � P (θk+1 = j | θk = i) , qmn � P (ηk+1 = n | ηk = m)
(2)

satisfying
∑

j∈Sθ pij = 1,
∑

n∈Sη qmn = 1, i ∈ Sθ, m ∈ Sη .
Since the probability of a packet loss depends on the mode of
the Markov chain, the values of νk and γk are either 0 or 1 with
certain probabilities depending on the current Markov mode.

Remark 4: In this network scenario, uplink and downlink
models are split up. This separation already exists in the lit-
erature [3], [4]. However, unlike the previous literature, we ex-
plicitly consider the channel mode (see Remark 2) by providing
two independent FSMCs for the SL and the AL, respectively.
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Fig. 2. FSMC model for SL: the Markov chain ηk represents the evo-
lution of the channel, while successful packet delivery and PER come
from γ̂m, m ∈ Sη .

1) Sensing FSMC: Let yk denote the measurement received
by the output-feedback controller at time k ∈ N. The general
model for the SL is yk = γky

s
k: the value of the RV γk when

the current Markov mode is ηk ∈ Sη is a function of ηk, and,
for notational convenience, we denote it as γk = γ(ηk). The
probability of having a successful packet delivery on the SL
depends on the current Markov mode ηk = m, i.e.,

γ̂m � P(γk = 1 | ηk = m), P(γk = 0 | ηk = m) = 1− γ̂m
(3)

are the probability that the packet is successfully delivered
at time k ∈ N and the likelihood of a packet loss occurrence
conditioned to ηk = m, respectively. Fig. 2 provides a graphical
representation of the FSMC model on the SL. A visual repre-
sentation of the AL is similar and, thus, omitted for brevity.

Let πm(k) denote the probability P(ηk = m), for m ∈ Sη ,
k ∈ N. The variable πm(k) can also be written through the
indicator function 1{ηk=m}, as πm(k) = E[1{ηk=m}] (see [11]).
We do set π(k) = [πm(k)]Im=1.

For what concerns the process {γk}, applying Bayes law, the
Markov property, and the independence between {γk} and {ηk},
we obtain, for m,n ∈ Sη [19],

P (γk+1 = 1, ηk+1 = n | ηk = m) = γ̂nqmn

P (γk+1 = 0, ηk+1 = n | ηk = m) = (1− γ̂n) qmn.

2) Actuation FSMC: In the SL, the controller is the receiver
and has direct access to the channel information (see Remark 2).
For the AL, the controller is the transmitter and can access the
actuation channel information by an ack message, as the reader
may notice in Fig. 1. Obviously, the ack message is received after
the transmission, so there is a one time-step delay. Let uk ∈ F

nu

denote the control law computed by the controller, and let uc
k

denote the digital control input received by the D/A block at
time k ∈ N. The general model for the AL is uc

k = νkuk: the
value of the RV νk when the current Markov mode is θk ∈ Sθ

is a function of θk, and, for notational convenience, we denote
it as νk = ν(θk).

The probability of the correct packet delivery on AL depends
on the current mode of the AL, that is θk = i, i.e.,
ν̂i � P(νk = 1 | θk = i), P(νk = 0 | θk = i) = 1− ν̂i (4)

are the probability that the packet is correctly delivered at
time k ∈ N and the likelihood that the control packet is lost
conditioned to θk = i, respectively. For i ∈ Sθ, k ∈ N, the prob-
ability P(θk = i) is denoted by 	i(k). For 
, i ∈ Sθ, k ∈ N,
the joint probability of being in an augmented Markov state
(θk−1, θk), P(θk−1 = 
, θk = i), is denoted by 	̃�i(k). More-
over, the quantity 	̃�i(k) may be written using the indicator
function 1{θk−1=�,θk=i} as 	̃�i(k) = E[1{θk−1=�,θk=i}] [11]. We
do set �̃(k) = [	̃�i(k)]

N
�,i=1. The probability 	̃�i(k) evolves

according to the following equations, for 
, i ∈ Sθ, k ∈ N [13]:
P (θk+1 = j, θk = i | θk �= i, θk−1 = 
) = 0

Fig. 3. Information flow timing between the plant and the controller
used for (a) the LO and (b) the CE.

P (θk+1 = j, θk = i | θk = i, θk−1 = 
) = pij .

Recalling that the availability of AL mode is affected by one
time-step delay, that is θk−1 (see Fig. 1), the aggregated Markov
state (θk, θk−1) is considered [13]. This memory introduced by
the presented aggregation is fictitious: the aggregated Markov
chain satisfies the Markov property of the memoryless chain
{θk}. Moreover, we can compute the probabilities of the joint
process (νk, θk, θk−1) as in [13].

3) Information Set: The scenario depicted in Fig. 3 shows
the information flow of actuation and sensing data between the
plant and the controller, under TCP-like protocols, i.e., in the
presence of ack messages [4]. Transmissions and computations
do not happen instantly: as the reader may see in Fig. 3, actuation
and sensing transmission times (δ3 and δ1, respectively) are
greater than zero, as well as the control law computation time
(denoted by δ2) and the ack transmission time δ4. Two different
scenarios may arise: either the time interval δ2 needed to the
controller for the computations of estimation and control law is
comparable to the sampling period T (this may happen when
slow computers are used to control high-order systems) or the
time needed for the estimation is very small compared to the sam-
pling period [18]. The first case is depicted in Fig. 3(a), where the
computation time δ2 is comparable to the sampling periodT . The
suitable estimation technique in this case is provided by the LO,
which requires the measurements up through the previous time
instant [18, Ch. 8]. By considering the delay δ1 introduced by the
sensing transmission, the controller owns the whole information
necessary for the estimation needed in the computation of uk+1

exactly at kT + δ1. Formally, the information set available to the
output-feedback controller for the computation of uk+1 based
on the LO is Fk+1

l = {(ut)
k
t=0, (yt)

k
t=0, (νt)

k
t=0, (γt)

k
t=0}. The

information set Fk+1
l implies that in the Luenberger-based

output feedback, uk+1 does not depend on the most recent
observation [18, Ch. 8]. Thus, the estimate vector might not be as
accurate as the one obtained with the most recent measurement.
For high-order systems controlled by slow computers, or when-
ever the sampling periods are comparable to the computation
time, the time interval between the observation instant and
the validity time of the control output allows the computer to
complete the calculations [18]. In many systems, however, the
computation time required to evaluate the estimation is quite
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short compared to the sampling period [see δ5 in Fig. 3(b)],
and the delay of almost a cycle between the measurement
and the proper time to apply the resulting control calculation
represents an unnecessary waste. Therefore, the controller may
exploit the current output measurement to obtain a more ac-
curate state estimation. Fig. 3(b) shows the time diagram of a
two-step estimation algorithm: the first step predicts the state
estimate based on the measurement from the previous time
step, while the following step corrects the predicted estimate
by integrating the most recent measurement. The time needed
to perform the last step (concerning the estimate correction and
control law computations) denoted by δ5 is contained in δ2,
and its brevity enables the control law transmission within the
proper time window, coherently with the scenario described
above of a controller with higher performance [18, Ch. 8].
Notably, the current measurement is used within a different
estimation technique (hereafter, CE) that provides a more ac-
curate estimated state vector based on the most recent output
information. The information set used for computing uk during
δ5, denoted by Fk

c , collects the information received up through
kT + δ1. Formally,Fk

c � {(ut)
k−1
t=0 , (yt)

k
t=0, (νt)

k−1
t=0 , (γt)

k
t=0}.

We emphasize that the current control input based on Fk
c has

access to the most recent observation. Exploiting this additional
information considerably increases the performance resulting
in lower estimation error cost, as explained more in detail in
Sections IV and VIII.

Remark 5: The state-system model (1) does not explicitly
account for the sensing and actuation delays (δ1 and either
δ2 + δ3 or δ5 + δ3 for the LO and CE, respectively) below one
sampling period T . Completely neglecting these delays may
reduce the system stability. However, for the state-space-based
design, an actuation delay of a fraction of a sampling period
corresponds to augmenting the system, while the sensing delay
does not influence the sampled value [18, Chs. 4.3.4, 8.6]. Thus,
without loss of generality, we consider the system matrices in
(1) as augmented to account for the subsampling period delays.

Remark 6: A natural alternative to the considered estimators
is the mode-independent estimator based on the KF described
by Schenato et al. [4], which does not require a channel state
estimation and, thus, results in a less complex design. However,
the estimator in [4] may fail to support a stable OFC over FSMCs,
as discussed in Section VIII. The necessary condition for a
stable mode-independent estimation and control over fading
Markov channels is that the system should behave well, i.e., it
should be Strong-MSD and Strong-MS stabilizable, as detailed
in Section VII.

B. WCN Model

Given the system described by (1) and actuation and sensing
FSMCs, the stochastic system describing the architecture in
Fig. 1 can be written as follows:⎧⎨⎩

xk+1 = Axk + νkBuk +Gwk

yk = γkLxk + γkHwk

zk = Cxk + νkDuk

(5)

with zk ∈ F
nz (needed to define the performance index of the

optimal controller), C and D are matrices of appropriate sizes.
Remark 7: Both νk and γk depend on the corresponding

channel mode according to the FSMC model, i.e., γk = γ(ηk)
and νk = ν(θk), respectively (see Section II-A). Therefore, we
refer to the system described by (5) as MJLS.

We assume that noise sequence {wk} is independent of the
initial state x0 and the sequences {νk} and {γk}. Moreover

E[wk] = Onw
, E[wkw

∗
k] = Inw

, E[wkw
∗
l ] = Onw

(6)

∀k, l ∈ N, k �= l (see also [11]). We assume, without loss of
generality, that the system matrices are constant matrices of
appropriate sizes [11, Sec. 5.2], such that

GH∗ = 0, HH∗ 	 0, C∗D = 0, D∗D 	 0. (7)

Similarly to [11, Sec. 5.3], we make the following technical
assumptions (with k ∈ N).

a.1) Initial conditions x0, θ0, and η0 are independent RVs.
a.2) White noise sequence {wk} is independent of initial condi-

tions (x0, ν0, γ0) and of processes {ν(θk)} and {γ(ηk)}, for
any k.

a.3) Markov chains {θk}, {ηk} and the noise sequence {wk}
are independent.

a.4) Markov chains {θk} and {ηk} are ergodic, with steady-
state probability distributions 	̃∞

�i � limk→∞ 	̃�i(k), 	∞
i �

limk→∞ 	i(k), andπ∞
m � limk→∞ πm(k), 
, i ∈ Sθ andm ∈

Sη . We set �̃∞ = [	̃∞
�i ]

N
�,i=1 and π∞ = [π∞

m]Im=1.

This article aims to solve the OFC problem over FSMCs
with two different estimation techniques guaranteeing the IH
convergence of the state in MS. This property is known as MSS
[11, Def. 3.8, pp. 36–37] that we present as follows.

Definition 1: The MJLS described by (5) is MSS if there
exist equilibrium points μ̂ and Q̂ (independent from initial
conditions) such that, for any initial condition (x0, ν0, γ0),
the following equalities hold: limk→∞ ‖E(xk)− μ̂‖ = 0,
limk→∞ ‖E(xkx

∗
k)− Q̂‖ = 0.

III. OUTPUT-FEEDBACK CONTROLLER

This section shows two alternative OFC systems for the
problem formalized in Section II.

A. Control Synthesis Based on the LO

Consider the scenario in Fig. 3(a) and the related information
setFk

l ,k ∈ N. The optimal LO-based Markov jump OFC system
relying on Fk

l for the synthesis of uk is

Gl :

{
x̌k+1 = Ǎ(νk, θk−1, γk, ηk)x̌k + B̌(ηk)yk
uk = F̌ (θk−1)x̌k

(8)

with x̌k being the estimated state obtained by the LO. The
controllerGl (with optimal matrices Ǎ(νk, θk−1, γk, ηk), B̌(ηk),
and F̌ (θk−1) to be found) should guarantee MSS of the closed-
loop system (see Definition 1). The sequences of matrices F̌ =
[F̌ (
)]N�=1 and B̌ = [B̌(n)]In=1 are the solutions of the optimal
control and of the optimal filtering problem, respectively.

B. Output-Feedback Controller With CE

Consider the scenario in Fig. 3(b) and the related information
setFk

c . The optimal CE-based Markov jump OFC system relying
on Fk

c for the synthesis of uk is

Gc :

⎧⎪⎨⎪⎩
x̃k+1 = Â (γk, ηk) x̃k + B̂(ηk)yk + Ĉ (νk, θk−1) x̂k

x̂k+1 = x̃k+1 + D̂(ηk+1) [yk+1 − γk+1Lx̃k+1]

uk = F̂ (θk−1)x̂k

(9)
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with x̃k and x̂k are the prediction and correction states at
time k ∈ N, respectively, obtained using the CE. The con-
trollerGc (with optimal matrices Â(γk, ηk), B̂(ηk), Ĉ(νk, θk−1),
D̂(ηk+1), and F̂ (θk−1) to be found) should guarantee the MSS
of the closed-loop system (see Definition 1). The sequences of
matrices F̂ = [F̂ (
)]N�=1 and D̂ = [D̂(n)]In=1 are the solutions
of optimal control and filtering problem, respectively.

Remark 8: Both Gl and Gc should achieve the MSS of the
closed-loop system. The CE provides a valid alternative to the
LO, and the proper control strategy should be chosen according
to the calculating capacity of the controller. When the com-
putation time δ5 [see Fig. 3(b)] required for the correction of
the predicted estimate is under a certain threshold, the suitable
controller is Gc; otherwise, Gl should be preferred (see also
Remark 9).

C. Linear–Quadratic Regulator

The necessary condition for an optimal IH solution of the
wireless control problem is the MS stabilizability with delay.

Definition 2. (MS stabilizability with delay): The system
(5) is MS stabilizable with one time-step delayed AL mode
observation if, for any initial condition (x0, θ0), and for each
mode 
 ∈ Sθ, there exists a mode-dependent gain F�, such that
uk = Fθk−1

xk is the MS stabilizing state feedback for (5).
Let F� ∈ F

nu×nx , 
 ∈ Sθ, denote the optimal mode-
dependent control gain with one time-step delayed operational
mode observation of the AL (see [13] for the solution of the
IH optimal control problem and [10] for a more general result).
For any X = [Xl]

N
l=1 ∈ H

Nnx,+, l ∈ Sθ, let us define Al(X)

and Cl(X) as follows: Al(X) � A∗(
∑N

i=1 pliXi)A+ C∗C,
Cl(X) � A∗(

∑N
i=1 pliν̂iXi)B. Let us also define Bl(X) as

Bl(X) �
∑N

i=1 pliν̂i(B
∗XiB +D∗D) and Xl(X) as Xl(X) �

Al(X)− Cl(X)B−1
l (X)C∗

l (X). For l ∈ Sθ, the set of equa-
tions Xl = Xl(X) is the set of control CAREs. The neces-
sary condition for the existence of the MS stabilizing solution
X̃ ∈ H

Nnx,+ of the control CAREs is the MS stabilizability
with delay of system (5) (see Definition 2). If X̃ ∈ H

Nnx,+

is the MS stabilizing solution of the control CAREs, then the
state-feedback control input Fθk−1

xk stabilizes the system, with
one time-step delay in the observation of the AL mode in the
MS sense (see [13]). The optimal control problem solution
is obtained by using the linear matrix inequality (LMI) ap-
proach [10]. The optimized performance index is given by Jh =
lim supt→∞

1
tE[

∑t
k=0(zkz

∗
k)|Fk

h ], with zk in (5), h = l for the
LO and h = c for the CE. The performance index achieved by
the optimal control law is J∗

h =
∑N

i=1 	
∞
i tr(G∗XiG).

IV. ESTIMATION TECHNIQUES

The output-feedback controllers introduced in Section III rely
either on the LO (Gl) or on the CE (Gc). The aim of the control
law is ensuring the MSS of the closed-loop system. The aim of
each estimator is ensuring MSS of the estimation error dynamical
system associated with the estimation technique.

Definition 3: The MJLS (5) is MSD if there exists an estimator
such that the corresponding estimation error system is MSS.

Remark 9: For the case in which the information on the output
of the system and on the Markov chain are available at each
time step, the best linear estimator of x(k) is the KF (see [11,
Remark 5.2]). In offline computations of the KF, the solutions of

the difference Riccati equations and of the time-varying Kalman
gain are sample-path dependent, and the number of sample paths
grows exponentially in time. Thus, KF offline implementation
is inadvisable here [17]. On the other hand, an online implemen-
tation of the KF requires online matrix inversions, which might
have a heavy computational burden. Therefore, this work takes
into account a different class of estimators with filtering gains
precomputed offline. This avoids online matrix inversions and
reduces the computational burden.

A. Markovian LO

This subsection briefly recalls the Markovian LO presented
in [19], given by

Ǧ :

⎧⎨⎩
x̌k+1 = Ax̌k + νkBuk − M̌ηk

(yk − γkLx̌k)

uk = Fθk−1
x̌k

x̌(0) = x̌0

(10)

with M̌m, m ∈ Sη , mode-dependent filtering gain obtained as
the solution of the Luenberger filtering problem, which relies on
the information set Fk

l . Note that when the controller makes the
computations for x̌k+1, it knows whether the packets containing
the control law uk and the measurement yk have been received
or not. Indeed, this information is contained in Fk+1

l , which is
exploited for computing the proper control input to apply at time
k + 1, that is, uk+1 = Fθk x̌k+1. Let us define the LO estimation
error at time step k ∈ N as ěk � xk − x̌k. The error dynamics
are derived as follows:

ěk+1 =
(
A+ γkM̌ηk

L
)
ěk +

(
G+ γkM̌ηk

H
)
wk. (11)

B. Markovian CE

The CE [18, Ch. 8] over the FSMC results in the following
MJLS:

Ĝ :

⎧⎪⎨⎪⎩
x̂k+1 = x̃k+1 − M̂ηk+1

[yk+1 − γk+1Lx̃k+1]

yk+1 = γk+1Lxk+1 + γk+1Hwk+1

uk = Fθk−1
x̂k

(12)

with M̂m, m ∈ Sη , mode-dependent filtering gain obtained
by solving the CE problem that relies on the information set
Fk

c [18]. The variables x̃k and x̂k are the predicted and the
estimated state vectors at time step k ∈ N, respectively. The CE
is a two-step estimation algorithm: the first step computes the
prediction x̃k+1 = Ax̂k + νkBuk based on the measurement
from the previous time step, while the following step corrects the
predicted estimate by integrating the most recent measurement.
The estimated state vector resulting from this correction with
yk+1 is x̂k+1.

Define the prediction error at time step k ∈ N as ek � xk −
x̃k. The resulting estimated state Markov jump system is

x̂k+1 = x̃k+1 − γk+1M̂ηk+1
Lek+1 − γk+1M̂ηk+1

Hwk+1.
(13)

Remark 10: At time step k + 1, the predicted state x̃k+1 is
corrected exploiting the prediction error ek+1, through the most
recent output measurement.

By substituting x̂k, obtained from (13), in the prediction, the
expression of x̃k+1 depends on the prediction error, as follows:

x̃k+1 = Ax̃k + νkBuk − γkAM̂ηk
Lek − γkAM̂ηk

Hwk.
(14)
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Therefore, the prediction error MJLS is given by

ek+1 =
(
A+ γkAM̂ηk

L
)
ek +

(
G+ γkAM̂ηk

H
)
wk. (15)

Define the CE estimation error as êk � xk − x̂k. Consequently

êk+1 = ek+1 + γk+1M̂ηk+1
Lek+1 + γk+1M̂ηk+1

Hwk+1.
(16)

Remark 11: In the LO, the estimation error coincides with
the prediction error. In the CE, when the prediction error ek
converges to zero, by (16), the estimation error goes to zero.
Thus, (15) and (16) are equivalent at the steady state.

Remark 12: Neither the control input nor the Markov chain
{θk} is involved in the MJLSs (11) and (15). This implies that
the optimal mode-dependent LO gain M̌m and the CE gain M̂m,
m ∈ Sη , can be designed independently from the optimal mode-
dependent control gain F�, 
 ∈ Sθ.

C. Computation Time

It is well known that the total number of floating-point
operations or flops to carry out the presented estimation al-
gorithms may provide a rough estimate of the computation
time [25]. Given the state estimate vector, the number of flops
needed for the evaluation of the control law is O(nunx). More-
over, the computational complexity of both the Luenberger
and the current state estimation numerical algorithms is the
same:O(n2

x + nxnu + ny + nxny). The physical constraint for
estimator implementation is obtained comparing δ2 (the time
needed for all the computations leading to the control law) and
the sampling time T . If the condition δ2 < T is satisfied, then
the LO represents a viable technique. Under this constraint, if
δ5 (which is shorter than δ2 as already seen in Section II-A3)
is such that the control transmission remains inside the proper
time window, the current estimation is feasible and provides a
more accurate result.

Remark 13: The physical constraints (concerning the com-
putation time) discussed above provide necessary conditions for
implementation. However, taking into account combined packet
losses in both communication channels, as well as considering
the actuation delay, the IH OFC is not easy to be modeled and
formally solved. Trivially, when all the communication is lost,
an unstable plant cannot be stabilized remotely. The conditions
concerning the theoretical existence of the IH estimators and
controllers operating over FSMCs can be based on the MS de-
tectability and stabilizability notions (discussed in the following
sections) guaranteeing an MS stable behavior of estimators and
controller with precomputed gains.

V. OBSERVER STABILITY ANALYSIS

This section provides the MSD specializations for the LO and
the CE, respectively.

A. Operators

We introduce some mathematical preliminaries instrumen-
tal for MSS analysis (see [11]). For all S = [Sm]Im=1, T =
[Tm]Im=1, both in H

Inx , we specify the inner product as
〈S;T〉 �

∑I
m=1 tr(S

∗
mTm). Let us define the operators E(·) �

[Em(·)]Im=1, D(·) � [Dm(·)]Im=1, T (·) � [Tm(·)]Im=1, L(·) �
[Lm(·)]Im=1, and V(·) � [Vm(·)]Im=1, all in B(HInx), for all

S = [Sm]Im=1 in H
Inx , m,n ∈ Sη , as follows:

Em(S) �
I∑

n=1

qmnSn, Dn(S) �
I∑

m=1

qmnSm (17)

Tn(S) �
I∑

m=1

qmn

{
γ̂mΓ̂m1SmΓ̂∗

m1 + (1− γ̂m)Γ̂m0SmΓ̂∗
m0

}
(18)

Lm(S) � γ̂mΓ∗
m1Em(S)Γm1 + (1− γ̂m)Γ∗

m0Em(S)Γm0

(19)

Vn(S) � γ̂nΓn1Dn(S)Γ
∗
n1 + (1− γ̂n)Γn0Dn(S)Γ

∗
n0 (20)

where the matrices Γn1, Γn0, Γ̂n1, and Γ̂n0 are arbitrary
matrices in F

nx×nx that will be specialized later in the
article, while qmn and γ̂n are those defined by (2) and
(3), respectively. Define O(·, ·) : HInx,ny × R

I → H
Inx , with

O(·, ·) � [Om(·, ·)]Im=1, and Ô(·, ·) : HInx,ny × R
I → H

Inx ,
with Ô(·, ·) � [Ôm(·, ·)]Im=1, for M � [Mn]

I
n=1 arbitrary ma-

trix inHInx,ny , andα = [αn]
I
n=1 arbitrary vector inRI ,n ∈ Sη ,

as

On(M,α) � αn (GG∗ + γ̂nMnHH∗M ∗
n) (21)

Ôn(M,α) �
I∑

m=1

qmnαm (GG∗ + γ̂mAMmHH∗M ∗
mA∗) .

(22)

Given Kmκ = Γ̄mκ ⊗ Γmκ, κ = 0, 1, define C, N ∈ F
In2

x×In2
x ,

as

N �
I⊕

m=1

(γ̂mKm1) +

I⊕
m=1

((1− γ̂m)Km0) , C � Q′ ⊗ In2
x
.

(23)

Remark 14: The matrices N and C are designed with the aim
of providing a suitable methodology for the test of detectability
conditions in Definitions 4 and 5, as will be discussed later.
However, even though the aim is the same as in [11], differently
from [11], they account for the general FSMC scenario, i.e., they
involve the probability γ̂m, m ∈ Sη .

Proposition 1: Consider the operators T , L, V in B(HInx),
defined in (18)–(20), respectively. Then:

i) ρ(L) = ρ(V);
ii) if Γ̂m0 = Γm0 and Γ̂m1 = Γm1 for all m ∈ Sη , then ρ(L) =
ρ(V) = ρ(T ).

Proof: See the Appendix. �
Remark 15: Proposition 1 shows the equivalence of operators

V , T , and L, concerning the spectral radius [11, Ch. 3].

B. LO Stability Analysis

The Luenberger stability analysis is based on the IH solution
of filtering CAREs, which are derived as on the asymptotic
solution of difference Riccati equations and obtained by defining
the first and second moments of the error ěk, k ∈ N, as follows:

m̌n(k) � E
[
ěk1{ηk−1=n}

]
, m̌(k) �

[
m̌n(k)

]I
n=1

∈ F
Inx

(24)

Y̌n(k) � E
[
ěkě

∗
k1{ηk−1=n}

]
, Y̌(k) � [Y̌n(k)]

I
n=1 ∈ H

Inx,+

(25)
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for n ∈ Sη . Consequently, E[ěk] =
∑I

n=1 m̌n(k) and
E[ěkě

∗
k] =

∑I
n=1 Y̌n(k). For arbitrary matrices Γn1 and

Γn0 in F
nx×nx , n ∈ Sη , define B̌ ∈ F

Inx×Inx as

B̌ �
((

I⊕
n=1

(γ̂nΓn1)

)
+

(
I⊕

n=1

((1− γ̂n)Γn0)

))
(Q′ ⊗ Inx

) .

(26)

Define also M̌ � [M̌m]Im=1, i.e., the sequence of mode-
dependent filtering gains in (10) providing the solution of the
LO filtering problem. Hence, we can state the following.

Proposition 2: Consider the error system described by (11).
Then, for all k ∈ N, the following equalities hold:

m̌(k + 1) = B̌m̌(k), Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k))
(27)

with V , O, and B̌ defined in (20), (21), and (26), respectively,
for Γn0 = A and Γn1 = A+ M̌nL, n ∈ Sη .

Proof: See the Appendix. �
The following definition provides a specialization of Defini-

tion 3 for the LO scenario.
Definition 4. (MSD): The system described by (5) is MSD if,

for each mode n ∈ Sη , there exists a mode-dependent filtering
gain M̌n ∈ F

nx×ny , such that ρ(V) < 1, V ∈ B(HInx) defined
in (20), for Γn1 = A+ M̌nL and Γn0 = A.

From now on, we refer to Definition 4 when using MSD.
Remark 16: By applying the results from [11, Sec. 3.4.2], the

property provided by Definition 4 is equivalent to the MSS of
the error system (11).

C. CE Stability Analysis

Analogous steps for the LO stability analysis are reported in
the following. Define for n ∈ Sη , k ∈ N,

mn(k) � E
[
ek1{ηk=n}

]
, m(k) � [mn(k)]

I
n=1 ∈ F

Inx

(28)

Zn(k) � E
[
eke

∗
k1{ηk=n}

]
, Z(k) �

[
Zn(k)

]I
n=1

∈ H
Inx,+.

(29)

Consequently, E[ek] and E[eke
∗
k] are given by E[ek] =∑I

n=1 mn(k) and E[eke
∗
k] =

∑I
n=1 Zn(k). For Γ̂n1 and Γ̂n0 ∈

F
nx×nx , n ∈ Sη , define B̂ ∈ F

Inx×Inx as

B̂ � (Q′ ⊗ Inx
)

(
I⊕

n=1

(
γ̂nΓ̂n1

)
+

I⊕
n=1

(
(1− γ̂n)Γ̂n0

))
.

(30)
Let M̂ = [M̂m]Im=1 be a sequence of mode-dependent filtering
gains in (12) providing the solution of the CE filtering prob-
lem. The following proposition formalizes the dynamics of the
observation error first and second moments.

Proposition 3: Consider the error system described by (15).
Then, for all k ∈ N, the following equalities hold:

m(k + 1) = B̂m(k), Z(k + 1) = T (Z(k)) + Ô
(
M̂,π(k)

)
(31)

with T , Ô, and B̂ defined in (18), (22), and (30), respectively,
for Γ̂n1 = A+AM̂nL and Γ̂n0 = A, n ∈ Sη .

Proof: See the Appendix. �

The following definition adapts Definition 3 to the CE sce-
nario.

Definition 5. (Strict-MSD): The system described by (5) is
Strict-MSD if, for each mode n ∈ Sη , there exists a mode-
dependent filtering gain M̂n ∈ F

nx×ny , such that ρ(T ) < 1,
with T ∈ B(HInx) defined in (18), for Γ̂n1 = A+AM̂nL and
Γ̂n0 = A.

Proposition 4: Assume that MJLS (5) is Strict-MSD. Then,
(5) is MSD according to Definition 4.

Proof: See the Appendix. �
Remark 17: By the results from [11, Sec. 3.4.2] applied to the

operator T (with T as in Definition 5), ρ(T ) < 1 is equivalent
to the MSS of the error system described by (15).

D. LO Filtering CAREs

The optimal mode-dependent filtering gain of LO results from
the optimization of the following performance index: J∗

L =

lim supt→∞(1/t)E[
∑t

k=0(ěkě
∗
k) | Fk

l ]. Obtaining the optimal
performance index in the Luenberger scenario necessitates deal-
ing with Luenberger filtering CAREs, introduced as follows.
Define for any Y ∈ H

Inx,∗, α = [αn]
I
n=1 ∈ R

I ,

Ǎn (Y,α) � ADn(Y)A∗ + αnGG∗, B̌n (Y) � ADn(Y)L∗

Řn (Y,α) � αnHH∗+LDn(Y)L∗, Čn (Y) � γ̂
1
2
n B̌n (Y)

for n ∈ Sη . Consider the set W, defined as follows:

W = {(Y,α) ∈ H
Inx,∗ × R

I , such that

Řn (Y,α) is nonsingular for any n ∈ Sη}.
For (Y,α) ∈ W, define the operators M(·, ·) : W → H

Inx,ny

and Y(·, ·) : W → H
Inx as M(Y,α) =

[
Mn(Y,α)

]I
n=1

and

Y(Y,α) =
[
Yn(Y,α)

]I
n=1

, with

Mn (Y,α) � −B̌n (Y) Ř−1
n (Y,α) (32)

Yn (Y,α) � Ǎn (Y,α)− Čn (Y) Ř−1
n (Y,α) Č∗

n (Y)
(33)

for any n ∈ Sη (see [11, Sec. A.1]). For notational convenience,
let us set M(Y) = M(Y,π∞), Y(Y) = Y(Y,π∞), and, for
n ∈ Sη , Řn(Y) = Řn(Y,π∞), Ǎn(Y) = Ǎn(Y,π∞). The
LO filtering CAREs are the set of equations given by

Yn = Yn(Y), n ∈ Sη. (34)

The optimal IH mode-dependent filtering gain is obtained from
the solution of the following optimization problem:

max tr

(
I∑

n=1

Yn

)
(35a)

subject to [
−Yn + Ǎn(Y) Čn(Y)

Č∗
n(Y) Řn(Y)

]
� 0 (35b)

Řn(Y) 	 0, Y ∈ H
Inx,∗, n ∈ Sη. (35c)

Define the sets L and M as follows:

L � {Y ∈ H
Inx,∗; Řn (Y) nonsingular ∀n ∈ Sη}

M � {Y ∈ L; Ř(Y) 	 0 and −Y + Y(Y) � 0}.
Then, the MS stabilizing filtering gain is given by

M̌n = Mn (Y) , n ∈ Sη (36)
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where Y ∈ L is the MS stabilizing solution of (34) [11, Sec.
A.1].

Definition 6. (MS stabilizing solution of (34)): Y ∈ L is the
MS stabilizing solution of (34) if it satisfies (34) and ρ(V) < 1,
with V ∈ B(HInx) defined in (20), Γn1 = A+Mn(Y)L and
Γn0 = A, n ∈ Sη; i.e., Mn(Y) stabilizes the error system (11)
in the MS sense.

The maximal solution of (34) and the solution of (35) coin-
cide, as stated in the following theorem.

Theorem 1: Assume that (5) is MSD. Then, the following
statements are equivalent.

i) There exists Y+ ∈ M satisfying (34), such that Y+ � Y, for
all Y ∈ M.

ii) There exists a solution Ŷ for the convex programming
problem described in (35).

Moreover, the two solutions coincide, i.e., Ŷ = Y+.
Proof: See the Appendix. �
The maximal solution and the MS stabilizing solution of (34)

are connected, as stated in the following theorem.
Theorem 2: There exists at most one MS stabilizing solution

of (34), which coincides with the maximal solution in M, that
is, the solution of the convex programming problem described
in (35).

Proof: See the Appendix. �
The MS stabilizing filtering gain (36) is computed exploiting

the maximal solution of (34), i.e., the solution of (35), as stated
in Theorem 2. Consequently, the optimal performance index
achieved by the LO is J∗

L =
∑I

m=1 tr(Ym), with Y = [Ym]Im=1
being the maximal solution of (34). The necessary condition
for the existence of the MS stabilizing solution of the filtering
CAREs is the MSD of system (5).

E. CE Filtering CAREs

The optimal mode-dependent filtering gain of the CE results
from the optimization of the following performance index,J∗

C =

lim supt→∞(1/t)E[
∑t

k=0(eke
∗
k)|Fk

c ].
Remark 18: J∗

C (computed exploiting the prediction error)
can be compared to the Luenberger performance index J∗

L (com-
puted exploiting the estimation error) because the estimation
error for the LO and the prediction error for the CE are equivalent
at the steady state (see Remark 11).

For Z = [Zm]Im=1 ∈ H
Inx,∗ and α = [αn]

I
n=1 ∈ R

I ,
define Ân(Z,α), R̂n(Z,α), and Ĉn(Z), as Ân(Z,α) �
AZnA

∗ + αnGG∗, R̂n(Z,α) � LZnL
∗ + αnHH∗, and

Ĉn(Z) � AZnL
∗, respectively, for n ∈ Sη . Consider the set

Wc,
Wc = {(Z,α) ∈ H

Inx,∗ × R
I , such that

R̂n (Z,α) is nonsingular for any n ∈ Sη}.
For (Z,α) ∈ Wc, define operators M̂(·, ·) : Wc → H

Inx,ny

and Z(·, ·) : Wc → H
Inx as M̂(Z,α) = [M̂n(Z,α)]In=1 and

Z(Z,α) = [Zn(Z,α)]In=1 [11, Sec. A.1], with

Zn(Z,α) �
I∑

m=1

qmn{Âm(Z,α)−γ̂mĈm(Z)R̂−1
m (Z,α)Ĉ∗

m(Z)}

M̂n (Z,α) � −ZnL
∗R̂−1

n (Z,α) .

For notational convenience, let us set M̂(Z) = M̂(Z,π∞) and
Z(Z) = Z(Z,π∞), which are CE filtering CAREs.

The following lemma states the equivalence of the filtering
CAREs solutions and the filtering gains, for the LO and the CE.

Lemma 1: The following statements are equivalent.

i) For any Y(0) ∈ H
Inx,+, Y(k) ∈ H

Inx,+, k ∈ N, satisfying
Y(k + 1) = Y(Y(k),π(k)), with Y defined in (33), con-
verges to Y ∈ H

Inx,+ satisfying Y = Y(Y).
ii) For any Z(0) ∈ H

Inx,+, Z(k) ∈ H
Inx,+, k ∈ N, satisfying

Z(k + 1) = Z(Z(k),π(k)), converges to Z ∈ H
Inx,+ satis-

fying Z = Z(Z).

Moreover, the mode-dependent filtering gain that stabilizes
the error system (15) in the MS sense is M̂n = M̂n(Z), and
the optimal performance index achieved by the CE is J∗

C =∑I
n=1 tr(Zn), with Z = [Zn]

I
n=1 ∈ H

Inx , Zn given by Zn =
Dn(Y), n ∈ Sη , and Y maximal solution of (34).

Proof: See the Appendix. �
Remark 19: The LO and the CE are equivalent from the

steady-state point of view, as stated in Lemma 1. However, their
difference in performance (indicated by indexes JL and JC)
and physical constraints (see Remark 13) allow for choosing
the most suitable estimator for a specific scenario, as shown in
Sections II-A3 and IV-C.

Remark 20: If the matrix A is nonsingular, then, from
Lemma 1, we may compute the LO filtering gain as M̌n =

A−1M̂n.

VI. SEPARATION PRINCIPLE

In the following, we state the separation principle for the LO
and CE scenarios, respectively.

A. LO Separation Principle

Consider the optimal matrices in (8), which we can express
as follows:

Ǎ(νk, θk−1, γk, ηk) = A+ νkBFθk−1
+ γkM̌ηk

L

B̌(ηk) = −M̌ηk
, F̌ (θk−1) = Fθk−1

.

Then, the optimal output-feedback controller (8) coincides with
(10), and the closed-loop system dynamics are

xk+1 = (A+ νkBFθk−1
)xk − νkBFθk−1

ěk +Gwk. (37)

By recalling the error dynamics described in (11), we write the
closed-loop system as follows:

Ǧcl : Ek+1 = Γ (νk, θk−1, γk, ηk) Ek +Σ(γk, ηk)wk (38)

Ek �
[
xk

ěk

]
, Σ (γk, ηk) �

[
G

G+ γkM̌ηk
H

]
Γ (νk, θk−1, γk, ηk)

�
[
(A+ νkBFθk−1

) −νkBFθk−1

Onx

(
A+ γkM̌ηk

L
)] .

Theorem 3: Given an MJLS described by (5) and the LO (10),
the following statements are equivalent.

i) the dynamics (37) can be made MSS;
ii) the MJLS described by (5) is both:

ii-a) MSD;
ii-b) MS stabilizable with one time-step delayed AL mode

observation.

Proof: See the Appendix. �
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B. CE Separation Principle

Consider the optimal matrices in (9), which we assert as
follows:

Â(γk, ηk) � A+ γkAM̂ηk
L, B̂(ηk) � −AM̂ηk

F̂ (θk−1) � Fθk−1
, Ĉ (νk, θk−1)�νkBFθk−1

, D̂(ηk)�−M̂ηk
.

Then, (12)–(14) coincide with (9), and the dynamics of the
closed-loop system are the following:

xk+1 = (A+ νkBFθk−1
)xk + (G− γkνkBFθk−1

M̂ηk
H)wk

− (νkBFθk−1
+ γkνkBFθk−1

M̂ηk
L)ek. (39)

By recalling the error dynamics described in (15), we write the
closed-loop system in a compact form as follows:

Ĝcl : Xk+1 = Ψ (νk, θk−1, γk, ηk)Xk +Ω (νk, θk−1, γk, ηk)wk

with Ψ (νk, θk−1, γk, ηk) �[
(A+ νkBFθk−1

) −(νkBFθk−1
+ γkνkBFθk−1

M̂ηk
L)

Onx

(
A+ γkAM̂ηk

L
) ]

Xk �
[
xk

ek

]
, Ω(νk, θk−1, γk, ηk)

�
[
G− γkνkBFθk−1

M̂ηk
H

G+ γkAM̂ηk
H

]
.

Remark 21: The matrices Ψ and Γ are upper triangular block
diagonal matrices as in [11], i.e., the error dynamics (driven by
{ηk}) do not depend on the state dynamics (induced by {θk}).
Differently from [11], the closed-loop dynamical matricesΓ and
Ψ contain the Markov jumps not only of the Markov chain {ηk}
(SL) but of the Markov chain {θk} (AL) too (see the FSMC
model in Sections II-A1 and II-A2). Moreover, we consider the
mode observation delay affecting the Markov chain {θk}k∈N.

Theorem 4: Given an MJLS described by (5) and CE (12),
the following statements are equivalent.

i) The dynamics (39) can be made MSS;
ii) the MJLS described by (5) is both:

ii-a) Strict-MSD;
ii-b) MS stabilizable with one time-step delayed AL mode

observation.

Proof: See the Appendix. �

VII. MODE-INDEPENDENT OUTPUT-FEEDBACK

Under the conditions presented in this section, the designer
can use mode-independent control and filtering gains. The ad-
vantage of mode independence concerns the reduced computa-
tional burden, especially when the number of modes increases.
The strong MS stabilizability (defined in the following) guaran-
tees the existence of a mode-independent control gain, which
is MS stabilizing. On the other hand, the following definitions
of Strong-MSD and Strong-Strict-MSD provide the basis for
deriving sufficient conditions guaranteeing the existence of a
mode-independent filtering gain, which makes the estimation
error system MSS.

Definition 7. (Strong-MS stabilizability): The system (5) is
Strong-MS stabilizable with one time-step delayed AL mode
observation if, for any initial condition (x0, θ0), there exists a

mode-independent control gain F b ∈ F
nu×nx such that uk =

F bxk is the MS stabilizing state-feedback for (5).
The following Strong-MSD and Strong-Strict-MSD notions

instead concern the SL.
Definition 8. (Strong-MSD): The system (5) is Strong-MSD

if there exists a mode-independent filtering gain M̌ b ∈ F
nx×ny ,

such that ρ(V) < 1, with V ∈ B(HInx) defined in (20), for
Γn1 = A+ M̌ bL, Γn0 = A, and n ∈ Sη .

Definition 9. (Strong-Strict-MSD): The system (5) is Strong-
Strict-MSD if there exists a mode-independent filtering gain
M̂ b ∈ F

nx×ny , such that ρ(T ) < 1, with T ∈ B(HInx) defined
in (18), for Γ̂n1 = A+AM̂ bL, Γ̂n0 = A, and n ∈ Sη .

Proposition 5: Consider the MJLS (5). The following impli-
cations hold.

i) Strong-MSD implies MSD.
ii) Strong-Strict-MSD implies Strict-MSD and Strong-MSD.

Proof: See the Appendix. �
Remark 22: Strong-Strict-MSD implies all the detectability

notions concerning the FSMC model. Thus, it is the strongest
notion, while MSD is the weakest one.

We introduce the mode-independent output feedback recall-
ing the filtering and control modified algebraic Riccati equations
(MARE) reported in the following [4], [26]. To this end, define

Åb
(
Y b
)
� AY bA∗ +GG∗, C̊b

(
Y b
)
� AY bL∗

R̊b
(
Y b
)
� LY bL∗ +HH∗, M̊b

(
Y b
)
=−Y bL∗R̊b

(
Y b
)−1

Ab
(
Xb
)
� A∗XbA+ C∗C, Cb

(
Xb
)
� B∗XbA

Rb
(
Xb
)
� B∗XbB +D∗D, Fb

(
Xb
)

= −Rb
(
Xb
)−1 Cb

(
Xb
)
.

for Y b, Xb ∈ F
nx×nx∗ . Consider the sets

L̊
b � {Y b ∈ F

nx×nx
∗ such that R̊b

(
Y b
)

is nonsingular}
L
b � {Xb ∈ F

nx×nx
∗ such that Rb

(
Xb
)

is nonsingular}.

For Y b
∞ ∈ L̊

b
, Xb

∞ ∈ L
b, the filtering and control MAREs are

Y b
∞ = Åb

(
Y b
∞
)
− γ̊C̊b

(
Y b
∞
)
R̊b

(
Y b
∞
)−1 C̊b∗ (Y b

∞
)

(40)

Xb
∞ = Ab

(
Xb

∞
)
− ν̊Cb∗ (Xb

∞
)
Rb

(
Xb

∞
)−1 Cb

(
Xb

∞
)
. (41)

Under the strong MS stabilizability condition, the mode-
independent MS stabilizing control gain exists, and it
is given by F b = Fb(Xb

∞), with Xb
∞ ∈ L

b satisfying
(41) [13]. Moreover, the critical arrival probability on
the AL is defined as νc � infν{0 ≤ ν ≤ 1 such that Xb

∞ �
0 satisfies (41)}[4, Lemma 5.4 (a)], and the critical obser-
vation arrival probability on the SL is denoted by γc [4,
Th. 5.5]. By [4, Lemma 5.4, Th. 5.5], νc and γc satisfy pmin ≤
νc ≤ pmax and pmin ≤ γc ≤ γmax ≤ pmax, where pmin � 1−
1/(maxh |λu

h(A)|2), pmax � 1− 1/
∏

h |λu
h(A)|2, with λu

h(A)

being the hth unstable eigenvalue of A, and γmax � infγ{0 ≤
γ ≤ 1 such that Y b

∞ � 0 satisfies (40)}.
Remark 23: Strong-MSD condition guarantees the existence

of the mode-independent filtering gain, which can be computed

as M̌ b = AM̊b(Y b
∞), with Y b

∞ ∈ L̊
b

satisfying (40). Moreover,
if Strong-Strict-MSD is satisfied, the existence of the CE
mode-independent filtering gain is guaranteed. In this case, the
filtering gain can be computed as follows: M̂ b = M̊b(Y b

∞),

with Y b
∞ ∈ L̊

b
.
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The next theorem links the optimal mode-dependent filtering
CARE solution and mode-independent solutions of the filtering
MARE. Specifically, the solutions of the filtering problem are
equivalent under particular conditions. The same holds for the
control problem [13, Th. 3].

Theorem 5: Assume that ν̊=
∑N

i=1 	iν̂i, γ̊=
∑I

m=1 π
∞
mγ̂m.

Then, the following statements hold.

i) The solution of the filtering MARE provides the mode-
independent solution of the filtering CAREs.

ii) The solution of the control MARE provides the mode-
independent solution of the control CAREs.

Proof: See the Appendix. �
LMIs guaranteeing MS detectability conditions are presented

as follows:

A∗ZmA+ γ̂mA∗Wm2L+ γ̂mL∗W ∗
m2A

+ γ̂mL∗Wm3L−Wm1 ≺ 0 (42a)[
Zm Wm2

W ∗
m2 Wm3

]
� 0 (42b)

Zm � Em(W1), Wm1 	 0, Zm 	 0, m ∈ Sη (42c)

W1 = [Wm1]
I
m=1, Z = [Zm]Im=1 in H

Inx,+, W2 =
[Wm2]

I
m=1 in H

Inx,ny , and W3 = [Wm3]
I
m=1 in H

Iny,+.
Proposition 6: Consider the MJLS described by (5) and the

following statements.

i) MJLS (5) is MSD.
ii) MJLS (5) is Strict-MSD.
iii) There exist W1 = [Wm1]

I
m=1, Z = [Zm]Im=1 ∈ H

Inx,+,
W2 = [Wm2]

I
m=1 ∈ H

Inx,ny , and W3 = [Wm3]
I
m=1 ∈

H
Iny,+, satisfying conditions (42).

Then, (i) ⇐⇒ (iii) and (ii) ⇒ (iii). Furthermore, if A is
nonsingular, we have (ii) ⇐⇒ (iii).

Proof: See the Appendix. �
Consider the following set of LMIs:

A∗ZA+ γ̂mA∗W2L+ γ̂mL∗W ∗
2A+ γ̂mL∗W3L−Wm1 ≺ 0

(43a)[
Z W2

W ∗
2 W3

]
� 0 (43b)

Z � Em (W1) , Wm1 	 0, Z 	 0, m ∈ Sη (43c)

W1 = [Wm1]
I
m=1 in H

Inx,+, Z in F
nx×nx
+ , W2 in F

nx×ny , and
W3 in F

ny×ny

+ .
Proposition 7: Consider the MJLS described by (5) and the

following statements.

i)There existW1 = [Wm1]
I
m=1 inHInx,+,Z ∈ F

nx×nx
+ ,W2 ∈

F
nx×ny , and W3 ∈ F

ny×ny

+ , satisfying conditions (43).
ii) MJLS (5) is Strong-MSD.
iii) MJLS (5) is Strong-Strict-MSD.

Then, (i) ⇒ (ii). Moreover, if A is nonsingular, (i) ⇒ (iii).
Proof: See the Appendix. �

VIII. NUMERICAL CASE STUDY

This section presents the wireless OFC of an inverted pendu-
lum on a cart [27], controlled remotely over TCP-like lossy SL
and AL. The considered cart and pendulum masses are 0.5 and

0.2 kg, inertia about the pendulum mass center is 0.006 kg · m2,
distance from the pivot to the pendulum mass center is 0.3 m,
and the coefficient of friction for the cart is 0.1. The system state
is defined by x =

[
δx, δẋ, δφ, δφ̇

]′
, with δx(t) = x(t)− x�,

δφ(t) = φ(t)− φ�, where x is the cart position, φ is the pen-
dulum angle from vertical, and x� and φ� are the equilibrium
point position and angle, respectively. The designed control law
aims to stabilize the pendulum in the upright position corre-
sponding to unstable equilibrium point x� = 0 m, φ� = 0 rad.
The optimal Markov jump output-feedback controllers (8) and
(9) have been applied to the discrete-time linear model derived
from the continuous-time nonlinear model by linearization.
The state-space model of the system is linearized around the
unstable equilibrium point and discretized with sampling period
Ts = 0.01 s. The obtained system matrices can be found in [19].
The process noise is characterized by the covariance matrix
E[wkw

∗
k] = Σw, with Σw = 2 · 10−6

I4. The state matrix A is
unstable since it has an eigenvalue 1.057, but it is easy to verify
that D∗D 	 0, the pair (A,B) is controllable, while (A,L) is
observable, so the closed-loop system is asymptotically stable
if νk = 1 and γk = 1 ∀k. Moreover, the necessary conditions
for the existence of the MS stabilizing solution for the control
and filtering CAREs are satisfied. FSMC models with TPMs
in R

4×4 describe the double-sided packet loss. These channels
are obtained by following the systematic procedure in [22]
that accounts for path loss, shadow fading, transmission power
control, and interference. The partitioning of the SINR range
is based on the values of PEP so that each SINR threshold
corresponds to a specific PEP value.

A. Detectability Analysis

The proposed methodology is applied to the study of the
MSD conditions. Simulation results highlight the existence of
a limit case for detectability conditions. When considering the
distance between the transmitter–receiver couple of interest
d0 = 17.348m and distance between the interfering transmitter
and the receiver of interestdi,1 = 9.548m, the resulting SL TPM
is given by

Q1 =

⎡⎢⎢⎣
0.8855395 0.0184352 0.0603969 0.0356284

0.8825920 0.0187857 0.0617956 0.0368267

0.8820434 0.0188504 0.0620549 0.0370513

0.8806549 0.0190134 0.0627101 0.0376216

⎤⎥⎥⎦ .

The probabilities of receiving the packet in each mode of the SL
are denoted by γ̂1 = [0.005, 0.5000509, 0.9237605, 1]. Condi-
tions (42) are satisfied. From Proposition 6, the system is MSD
and Strict-MSD. As far as strong conditions (43) go, they are
not satisfied. From the spectral radius analysis, ρ(V) = ρ(T ) =
0.999999983 with Markovian filtering, and ρ(V) = ρ(T ) =
1.000000074 with the Bernoullian filtering. In this case, the
condition γ̂ > γmax from [4, Th. 5.6] is satisfied. However, the
system is unstable with the Bernoullian filtering because the
system is neither Strong-MSD nor Strong-Strict-MSD. This limit
case reveals that the Bernoullian OFC may fail in making the
closed-loop system MSS when strong detectability conditions
are not satisfied, while the Markovian OFC achieves this aim
over the FSMCs.

B. Stabilizability Analysis

The MS stabilizability analysis is presented through a limit
case: consider d0 = 17.348m and di,2 = 10m. Then, the AL
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TABLE I
DETECTABILITY AND STABILIZABILITY ANALYSIS SUMMARY

TPM is

P2 =

⎡⎢⎢⎣
0.8647302 0.0208232 0.0701174 0.0443292

0.8615749 0.0211698 0.0715631 0.0456922

0.8609554 0.0212373 0.0718457 0.0459616

0.8593737 0.0214086 0.0725659 0.0466518

⎤⎥⎥⎦ .

The probabilities of receiving the packet in each mode of
the AL are given by ν̂2 = [0.006, 0.5003405, 0.9248986, 1].
Thus, ρ(L̂) = 1.000388084 [with L̂ defined in (44)] using
the Bernoullian control gain, while the spectral radius ρ(L̂) =
0.996248733with the Markovian mode-dependent control gain.
This case highlights that even though the condition ν̂ > νc from
[4, Th. 5.6] is satisfied, the system is unstable with the Bernoul-
lian controller because the system is not Strong-MS stabilizable
(recall Definition 7) (see also Remark 24). The Bernoullian
control law is not able to make the closed-loop system MSS,
while the Markovian control achieves this aim. Varying distances
di between the interfering transmitter and receiver of interest
positioned at d0 = 17.348m from its transmitter, we distinguish
four cases: C.A (di ≤ 9.547m), C.B (di = 9.548m), C.C (di
going from 9.549 to 12.100 m), and C.D (di ≥ 12.101m).
Table I provides insights on the detectability and stabilizability
for each of these cases: the check mark indicates that the notion
holds, while the cross mark reveals that its required conditions
are not satisfied.

Remark 24: The results presented in this article are more
general with respect to the ones by Schenato et al. [4]. As also
pointed out in the detectability and stabilizability analysis, even
though in this example the conditions by Schenato et al. are
satisfied, the system is not MSS with the Bernoullian mode-
independent controller. This is because Strong MS stabilizability
and Strong-MSD are not satisfied.

C. Performance Analysis and Comparison

Consider distances d0 = 17.348m, di,3 = 14m (correspond-
ing to the case C.D in Table I), and covariance matrix Σw de-
scribed before. The performance indexes obtained by the Marko-
vian LO and CE are J∗

L = 0.0001109 and J∗
C = 0.0000746,

respectively. The performance index obtained by the Bernoul-
lian observer is J∗

B = 209.8934328. The reported performance
indexes highlight the fact that the presented mode-independent
estimation techniques are easier to implement, but their av-
erage cost is larger than the one obtained by the Markovian
filtering. The spectral radii of T and V are the same for both
mode-dependent Markovian filters because these estimators are
equivalent at the steady state (see Remark 11). However, the
advantage of the CE compared to the LO is that it involves the
most recent measurement in the estimation, yielding a smaller
performance index. Fig. 4 provides the closed-loop mean square
state trajectories obtained with 1000 independent trajectories.
As the reader may notice, the CE leads to closed-loop mean
square state trajectory that remain far below the closed-loop

Fig. 4. Mean square state trajectories in closed-loop in blue obtained
with the Markovian LO, red obtained with the Markovian CE, dashed
blue obtained with the Bernoullian LO, and dashed red obtained with
the Bernoullian CE.

Fig. 5. Estimation error on cart position obtained by Monte Carlo
simulations are reported in yellow, the mean error trajectory in red, the
maximum error trajectory in blue, and the minimum error trajectory in
green. The top right of each panel reports a zoom in for each plot.

mean square state trajectory provided by the LO. Consider the
scenario with distances d0 = 17.348m and di,3 = 14m, where
Σw = qq′, with q = [0.003, 1,−0.005,−2.150]′ [4]. This case
is reported in Fig. 5 to emphasize the performance differences
existing between the LO and the CE. The first difference can
be individuated in the resulting performance index J∗

L = 65
for the LO, and J∗

C = 43 for the CE. The performance index
shows that the cost achieved by the LO is higher with respect
to the one achieved by the CE (see also Remark 18). Moreover,
Fig. 5 highlights the behavior of the error trajectories for each
observer. After the transient, the error trajectories obtained by
the CE become smooth faster with respect to the error trajectories
obtained by the LO, which takes 20 samples to become smooth.

IX. CONCLUSION

This article presents estimation techniques and detectability
conditions for WCNs modeled via MJLSs (under TCP-like
communication scheme). The resulting OFC over wireless
medium finds applications in industrial automation, telesurgery,
smart grids, and intelligent transportation, where communica-
tion nonidealities must be considered to guarantee acceptable
closed-loop performance. We generalize the results from [4] by
using the Markov modeling of the wireless channel and introduc-
ing the stabilizability and detectability conditions accounting for
the communication link mode (see also Remark 24). As future
developments, we plan to investigate the same WCN scenario
under a UDP-like communication scheme.

APPENDIX A
TECHNICAL PRELIMINARIES

Since, for finite-dimensional linear spaces, all norms are
equivalent [28, Th. 4.27] from a topological viewpoint, as vector
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norms, we use variants of vector p-norms. For what concerns
the matrix norms, we use 
1 and 
2 norms [29, p. 341], which
treat nr × nc matrices as vectors of size nrnc and use one
of the related p-norms. The definition of 
1 and 
2 norms is
based on the operation of vectorization of a matrix, vec(·),
which is further used in the definition of the operator ϕ̂(·), to
be applied to any block matrix, e.g., Φ = [Φ

m
]Cm=1: ϕ̂(Φ) �

[vec(Φ
1
), . . . , vec(Φ

C
)]′. The linear operator ϕ̂(·) is a uniform

homeomorphism, its inverse operator ϕ̂−1(·) is uniformly con-
tinuous [30], and any bounded linear operator in B(FCnr×nc)
can be represented in B(FCnrnc) through ϕ̂(·).

A. Mode-Dependent Estimation Techniques

Proof of Proposition 1: Define matricesΛ1 � NC andΛ2 �
N∗C∗, with C and N in (23). Then, ρ(Λ1) = ρ(Λ2). For all S =
[Sm]Im=1 in H

Inx , ϕ̂(V(S)) = Λ1ϕ̂(S), ϕ̂(L(S)) = Λ2ϕ̂(S),
see, e.g., [11, Rem. 3.5], and thus, (i) follows. By setting,
for all m ∈ Sη , Γ̂m0 = Γm0, Γ̂m1 = Γm1, and Λ3 � CN , the
following equalities hold: ρ(Λ1) = ρ(Λ2) = ρ(Λ3). Recalling
that ϕ̂(T (S)) = Λ3ϕ̂(S), ∀S ∈ H

Inx , condition (ii) follows.�
Proof of Proposition 2: Applying (11), (24), (25), the assump-

tions on noise sequence, the product GH∗ = Onx
, (7), and (6),

the proof is straightforward; see [19] for more details. �
Proof of Proposition 3: Consider the error system (15). Recall

the definition (28) ofm(k + 1), for k ∈ N. By assumption (a.3),
applying the propertyE[wk] = Onw

, the definitions of transition
probability and of γ̂m, m ∈ Sη , the expression of m(k + 1) in
(31) follows. Consider the definition (29) of Z(k), for k ∈ N.
By applying assumption (a.3), the properties E[wk] = Onw

,
E[wkw

∗
k] = Inw

in (6), GH∗ = 0 in (7), definitions of transition
probability and of γ̂m, the recursive expression of Zn(k + 1),
for m,n ∈ Sη , follows. Consider T and Ô defined in (18) and
(22), respectively. By setting Γ̂m1 = A+AM̂mL, Γ̂m0 = A,
and M̂ = [M̂m]Im=1, form ∈ Sη andπ(k) = [πm(k)]Im=1, (31)
follows, completing the proof. �

Proof of Proposition 4: Assume that MJLS (5) is Strict-
MSD. Then, there exists a mode-dependent filtering gain
M̂n ∈ F

nx×ny such that ρ(T ) < 1, with T ∈ B(HInx) in (18),
for Γ̂n1 = A+AM̂nL, Γ̂n0 = A, n ∈ Sη . Pick the filtering
gain M̌n = AM̂n ∈ F

nx×ny . By setting Γn1 = A+ M̌nL and
Γn0 = A, we have Γ̂n1 = Γn1 and Γ̂n0 = Γn0. Consider now
the operator V from (20), for Γn1 and Γn0 defined above. By
Proposition 1, ρ(V) = ρ(T ), which implies ρ(V) < 1. Thus, (5)
is MSD. �

Proof of Theorem 1: The implication (i) ⇒ (ii) follows from
the Schur complement [11, Lemma 2.23]. On the other hand,
assume that (ii) holds. By the optimality of the solution of (35)
and the MSD of (5), (i) follows. Moreover, the solutions of (35)
and (34) coincide; see [19] for more details. �

Proof of Theorem 2: Assume that Ŷ =
[
Ŷn

]I
n=1

is an MS

stabilizing solution for filtering CAREs (34), so that system (5)
is MSD, with M̌n = Mn(Ŷ),n ∈ Sη . By some technical results
from [19], we have the existence of a maximal solution Y+ ∈
M, satisfying Y+ = Y(Y+), such that Ŷ −Y+ � 0 and Ŷ −
Y+ � 0. Thus, Ŷ = Y+. See [19] for more details. �

The following result proves the equivalence of the two esti-
mation techniques for the MSS.

Proof of Lemma 1: Assume that the statement (i) holds.
Set Y(0) = [Yn(0)]

I
n=1 ∈ H

Inx,+, ∀Z(0) = [Zn(0)]
I
n=1 ∈

H
Inx,+, as Yn(0) = Ân(Z(0),π(0))− B̃n(Z(0),π(0)), with

B̃n(Z(0), π(0)) � γ̂nĈn(Z(0))R̂−1
n (Z(0),π(0))Ĉ∗

n(Z(0)).
By (i), the limit for k → ∞ of Y(k) converges to
Y in H

Inx,+ satisfying Y = Y(Y). Then, for n ∈ Sη

and k ∈ N, the following equalities hold: Yn(k) =

Ân(Z(k),π(k))− B̃n(Z(k),π(k)), with B̃n(Z(k),π(k)) �
γ̂nĈn(Z(k))R̂−1

n (Z(k),π(k))Ĉ∗
n(Z(k)), and Zn(k + 1) =

Dn(Y(k)). This implies that the limit for k → ∞ of Z(k)
converges to D(Y) = Z(Z).

Assume that (ii) holds. Set Z(0) = [Zm(0)]Im=1 ∈ H
Inx,+,

∀ Y(0) = [Ym(0)]Im=1 ∈ H
Inx,+, as Z(0) = D(Y(0)).

From (ii), limk→∞ Z(k) = Z, with Z = Z(Z). Then, for
m ∈ Sη , Ym(k + 1) = Âm(Z(k),π(k))− B̃m(Z(k),π(k))
and Zn(k) = Dn(Y(k)), implying limk→∞ Y(k) = Y,
Y = Y(Y).

Assume thatY ∈ M is the MS stabilizing solution of the filter-
ing CAREs Y = Y(Y). Then, Mn(Y) defined by (32) is such
that the spectral radius ρ(V) < 1, with V ∈ B(HInx) defined
in (20) for Γn1 = A+Mn(Y)L, Γn0 = A, and n ∈ Sη . By
setting Zn = Dn(Y), the following equality holds for any n ∈
Sη:Mn(Y) = AM̂n(Z). Considering Γ̂n1 = A+AM̂n(Z)L

and Γ̂n0 = A, we obtain Γ̂n1 = Γn1 and Γ̂n0 = Γn0. By Propo-
sition 1, ρ(V) = ρ(T ), and, consequently, ρ(T ) < 1. More-
over, the optimal performance index achieved by the CE is
J∗
C =

∑I
n=1 tr(Zn). �

In the following, all mathematical preliminaries and motiva-
tions leading to the separation principle are illustrated concern-
ing the output-feedback controller designed with the Markovian
LO. A reduced version of the proof is reported in [19]. Define, for
k ∈ N, 
, i, j ∈ Sθ, w�i(k) � E[xk1{θk−1=�,θk=i}], W�i(k) �
E[xkx

∗
k1{θk−1=�,θk=i}] and set w(k) � [w�i(k)]

N
�,i=1, W(k) �

[W�i(k)]
N
�,i=1. For V = [Vij ]

N
i,j=1 ∈ F

Nnx×Nnx , define the op-

erator L̂(·) = [L̂ij(·)]Ni,j=1 ∈ B(FNnx×Nnx), with

L̂ij(V) �
{
A

N∑
l=1

VliA
∗ + ν̂iB

N∑
l=1

FlVliF
∗
l B

∗+

ν̂iB
N∑
l=1

FlVliA
∗ + ν̂iA

N∑
l=1

VliF
∗
l B

∗

}
pij . (44)

For Y = [Ym]Im=1 ∈ H
Inx , β = [β�i]

N
�,i=1 ∈ R

N×N , i, j ∈ Sθ,
define the operator H(·, ·) : HInx × R

N×N → F
Nnx×Nnx as

H(Y,β) � [Hij(Y,β)]Ni,j=1, with

Hij (Y,β) � ν̂iB

N∑
�=1

β�iF�

(
I∑

m=1

Ym

)
F ∗
�B

∗pij +GG∗βij .

Proposition 8: Consider the MJLS (5) and the closed-loop
system dynamics (37). Then, ∀ k ∈ N, i, j ∈ Sθ,

Wij(k + 1) = L̂ij(W(k)) +Hij(Y̌(k), �̃(k))

− 2R

{
ν̂iB

N∑
�=1

F�

(
I∑

m=1

m̌m(k)

)
w∗

�i(k)A
∗



1656 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 3, MARCH 2024

+ν̂iB

N∑
�=1

F�

(
I∑

m=1

m̌m(k)

)
w∗

�i(k)F
∗
�B

∗

}
pij . (45)

Proof: From (11) and (37), recalling the definition of L̂
in (44), by assumptions (a.2) and (a.3), applying (6) and the
independence of sequences θk and ěk, we have

Wij(k + 1) = L̂ij (W(k))

+

(
ν̂iB

N∑
�=1

	̃�i(k)F�E [ěkě
∗
k]F

∗
�B

∗ +GG∗
N∑
�=1

	̃�i(k)

− ν̂i2R

(
B

N∑
�=1

F�E [ěk]w
∗
�i(k)A

∗

+ B

N∑
�=1

F�E [ěk]w
∗
�i(k)F

∗
�B

∗

))
pij .

Thus, (45) follows. The proof is complete. �
Proof of Theorem 3: Assume that (ii) holds. Then, by Defi-

nition 2, there exists a mode-dependent control gain F�, 
 ∈ Sθ,
that makes the dynamics of xk MSS. Consequently, by [13,
Prop. 3], ρ(L̂) < 1, with L̂ in (44). By Definition 4, there exists a
mode-dependent filtering gain M̌n, n ∈ Sη , such that ρ(V) < 1,
with V ∈ B(HInx) in (20), for Γn1 = A+ M̌nL and Γn0 = A.
By Proposition 2

Y̌(k + 1) = V(Y̌(k)) +O(M̌,π(k)). (46)

Since ρ(V) < 1, by (a.4), from (46), limk→∞ Y̌(k) = Y̌,

Y̌ = V(Y̌) +O(M̌,π∞) (47)

and thus, for i, j ∈ Sθ, limk→∞ Hij(Y̌(k), �̃(k)) =
Hij(Y̌, �̃∞). From (27) and (47), by [11, Propositions 3.6
and 3.36], we obtain limk→∞ m̌(k) = OInx

. By Proposition 8,
for i, j ∈ Sθ, limk→∞ Wij(k + 1) = L̂ij(W) +Hij(Y̌, �̃∞),
and thus, there exists W = [Wij ]

N
i,j=1, with Wij ∈ F

nx×nx
+

satisfying Wij = limk→∞ Wij(k). Moreover, by [13, Prop. 2],
limk→∞ w�i(k) = w�i ∈ F

nx , 
, i ∈ Sθ. Therefore, the
closed-loop system is MSS by Definition 1, implying
(i). To prove the converse of the theorem, assume now
that (i) holds. Then, there exists W = [Wij ]

N
i,j=1, with

Wij = limk→∞ Wij(k). By Proposition 8, Wij , i, j ∈ Sθ,
can be written as follows. Wij = limk→∞ Wij(k + 1), with
Wij(k + 1) in (45). Thus, there exists Y̌ ∈ H

Inx,+, such that
limk→∞ Y̌(k) = Y̌, with Y̌ satisfying (47). Therefore, the
error system (11) is MSS. By [11, Ths. 3.33 and 3.9], we have
that condition (ii-a) holds. Moreover, by [11, Propositions
3.6 and 3.36], limk→∞ m̌(k) = OInx

, and thus, the following
equality holds for i, j ∈ Sθ, Wij = L̂ij(W) +Hij(Y̌, �̃∞),
implying that the mode-dependent control gain F�, 
 ∈ Sθ,
stabilizes the dynamics (37) in the MS sense, i.e., condition
(ii-b) holds. �

The detailed proof of the separation principle concerning
the OFC based on the CE is presented in the following.
Define Ĥ(·, ·, ·) : HInx × R

N×N × R
I → F

Nnx×Nnx , for Z =
[Zm]Im=1 ∈ H

Inx , β = [β�i]
N
�,i=1 ∈ R

N×N ,σ = [σm]Im=1 ∈
R

I , i, j ∈ Sθ, as Ĥ(Z,β,σ) � [Ĥij(Z,β,σ)]
N
i,j=1, with

Ĥij(Z,β,σ) �
N∑
�=1

I∑
m=1

{β�iν̂iBF�ZmF ∗
�B

∗

+ β�iν̂iγ̂mBF�M̂mLZmL∗M̂ ∗
mF ∗

�B
∗

+ β�iν̂iγ̂mBF�ZmL∗M̂ ∗
mF ∗

�B
∗+β�iν̂iγ̂mBF�M̂mLZmF ∗

�B
∗

+β�iσmGG∗ + β�iσmν̂iγ̂mBF�M̂mHH∗M̂ ∗
mF ∗

�B
∗
}
pij .

(48)

Proposition 9: Consider the MJLS (5) and the closed-loop
system dynamics (39). Then, ∀ k ∈ N, i, j ∈ Sθ,

Wij(k + 1) = L̂ij(W(k)) + Ĥij

(
Z(k), �̃(k),π(k)

)
+ 2R

( N∑
�=1

I∑
m=1

{
ν̂iBF�mm(k)w∗

�i(k)A
∗

+ ν̂iγ̂mBF�M̂mLmm(k)w∗
�i(k)A

∗

+ ν̂iBF�mm(k)w∗
�i(k)F

∗
�B

∗

+ ν̂iγ̂mBF�M̂mLmm(k)w∗
�i(k)F

∗
�B

∗
})

pij (49)

where L̂ij and Ĥij are defined in (44) and (48), respectively.
Proof: From (15) and (39), recalling L̂ operator in (44), by

assumptions (a.2) and (a.3), applying the properties E[wk] =
Onw

and E[wkw
∗
k] = Inw

, in (6), the definition of transition
probability, and the independence of sequences {ek} and {θk}
(see Remark 12), (49) follows. �

Proof of Theorem 4: Assume that (ii) holds. Then, there
exists a mode-dependent control gain F�, 
 ∈ Sθ, that makes
the dynamics of xk MSS. Consequently, by [13, Prop. 3],
ρ(L̂) < 1, with L̂ in (44). By Definition 5, there exists a
mode-dependent filtering gain M̂n,n ∈ Sη , such that ρ(T ) < 1,
with T ∈ B(HInx) in (18), Γ̂n1 = A+AM̂nL and Γ̂n0 = A.
By Proposition 3, Z(k + 1) = T (Z(k)) + Ô(M̂,π(k)). Thus,
from ρ(T ) < 1 and the assumption (a.4), limk→∞ Z(k) = Z ∈
H

Inx,+, with

Z = T (Z) + Ô(M̂,π∞). (50)

Therefore, limk→∞ Ĥij(Z(k), �̃(k),π(k)) = Ĥij(Z, �̃
∞,

π∞), i, j ∈ Sθ. From (31) and (50), by [11, Propositions
3.6 and 3.36], limk→∞ m(k) = OInx

. By Proposition 9,
limk→∞ Wij(k + 1) = L̂ij(W) + Ĥij(Z, �̃

∞,π∞), i, j ∈
Sθ. Thus, there exists W = [Wij ]

N
i,j=1, with Wij ∈ F

nx×nx
+ ,

satisfying, for i, j ∈ Sθ,Wij = limk→∞ Wij(k + 1). Moreover,
by [13, Prop. 2], we get limk→∞ w�i(k) = w�i ∈ F

nx , 
, i ∈ Sθ.
Therefore, the closed-loop system is MSS, i.e., (i) holds.

To prove the converse statement, assume that (i) holds. Then,
there exists W = [Wij ]

N
i,j=1, with Wij = limk→∞ Wij(k). By

Proposition 9, Wij , i, j ∈ Sθ, satisfies (49), with Z(k) satisfy-
ing (31). This implies that there exists Z ∈ H

Inx,+, such that
limk→∞ Z(k) = Z, with Z satisfying (50). Therefore, the error
system (15) is MSS, and, by [11, Ths. 3.33 and 3.9], condition
(ii-a) holds. Moreover, by [11, Propositions 3.6 and 3.36], we
have that limk→∞ m(k) = OInx

. Thus, the following equality
holds for i, j ∈ Sθ: Wij = L̂ij(W) + Ĥij(Z, �̃

∞,π∞), im-
plying that the mode-dependent control gain F�, 
 ∈ Sθ, makes
the dynamics (39) MSS, i.e., condition (ii-b) holds. �
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B. Proofs for the Mode-Independent Output Feedback

This section reports the results on the mode-independent
OFC.

Proof of Proposition 5: Consider the MJLS (5). Assume that
(5) is Strong-MSD. Then, there exists a mode-independent filter-
ing gain M̌ b ∈ F

nx×ny , such that ρ(V) < 1, with V ∈ B(HInx)
in (20), for Γn1 = A+ M̌ bL, Γn0 = A and n ∈ Sη . Pick the
mode-dependent filtering gain M̌n = M̌ b and consider V with
Γn1 = A+ M̌nL and Γn0 = A. The condition ρ(V) < 1 is
again satisfied, and implication (i) holds. Assume now that (5)
is Strong-Strict-MSD. Then, there exists a mode-independent
filtering gain M̂ b ∈ F

nx×ny , such that ρ(T ) < 1, with T ∈
B(HInx) in (18), for Γ̂n1 = A+AM̂ bL, Γ̂n0 = A, andn ∈ Sη .
For all m ∈ Sη , pick the mode-dependent filtering gain M̂m =

M̂ b and consider T with Γ̂m1 = A+AM̂mL and Γ̂m0 = A.
The condition ρ(T ) < 1 is again satisfied, and the implica-
tion Strong-Strict-MSD⇒ Strict-MSD holds. Moreover, if (5)
is Strong-Strict-MSD, then there exists a mode-independent fil-
tering gain M̌ b = AM̂ b, such that, settingΓn1 = A+ M̌ bL and
Γn0 = A, the following equalities are satisfied: Γ̂n0 = Γn0 and
Γ̂n1 = Γn1, for all n ∈ Sη . Consider now V , with Γn1 and Γn0

defined above. By Proposition 1, ρ(V) = ρ(T ), which implies
ρ(V) < 1, and thus, Strong-Strict-MSD⇒ Strong-MSD. �

Proof of Theorem 5: Condition (ii) follows from [13,
Th. 3], so we only need to prove condition (i). By
assumption, π∞ = [π∞

m]Im=1 is the stationary distribution
of the SL modes, and thus, π∞

n =
∑I

m=1 qmnπ
∞
m . More-

over, the probability γ̊ =
∑I

n=1 π
∞
n γ̂n can be written

as γ̊ =
∑I

m=1 π
∞
m

∑I
n=1 qmnγ̂n. By applying the property∑I

m=1 π
∞
m = 1, the filtering MARE (40) can be rewritten as∑I

m=1 π
∞
m{Y b

∞ − Åb(Y b
∞) + B̊b

m(Y b
∞)} = 0, with B̊b

m(Y b
∞) �∑I

n=1 qmnγ̂n(C̊b(Y b
∞)R̊b(Y b

∞)−1C̊b∗(Y b
∞)), holding for allπ =

[πm]Im=1, if and only if, for all m ≤ I ,

Y b
∞ = Åb

(
Y b
∞
)
− ζmC̊b

(
Y b
∞
)
R̊b

(
Y b
∞
)−1 C̊b∗ (Y b

∞
)

(51)

with ζm =
∑I

n=1 qmnγ̂n. Equation (51) is exactly (40), where,
as required by the mode-independence, Ym = Y b

∞, for all m ∈
Sη . This completes the proof. �

Technical results concerning MSD are proved in the following.
Proof of Proposition 6: Assume that (i) holds. Then, there

exists a mode-dependent filtering gain M̌n ∈ F
nx×ny , n ∈ Sη ,

such that ρ(V) < 1, with V ∈ B(HInx) in (20), for Γn1 =
A+ M̌nL and Γn0 = A. Consider the operator L ∈ B(HInx)
in (19), with the same Γn1 and Γn0 given for V . By Propo-
sition 1, ρ(V) = ρ(L), and, therefore, ρ(L) < 1. By apply-
ing [11, Th. 3.9], we have that, for V = [Vm]Im=1 ∈ H

Inx,+,
Vm 	 0, m ∈ Sη , Lm(V)− Vm ≺ 0. Taking W1 = V and
Zm = Em(W1), condition (42c) is satisfied. By choosing
Wm2 = ZmM̌m, Wm3 = W ∗

m2Z
−1
m Wm2 and substituting these

expressions in Lm(V)− Vm, condition (42a) follows. Recall-
ing that Wm3 � W ∗

m2Z
−1
m Wm2, by the Schur complement [11,

Lemma 2.23], we get (42b). Thus, statement (i) ⇒ (iii).
Let us prove that (iii) ⇒ (i). Assume that (iii) holds and

choose the filtering gain as M̌m = Z−1
m Wm2. Consider again

the operator L defined above. From (42b), by the Schur

complement, we have Wm3 � W ∗
m2Z

−1
m Wm2, and, from (42c),

Zm � Em(W1). Thus, by condition (42a), we get Lm(W1)−
Wm1 ≺ 0. By [11, Th. 3.9], ρ(L) < 1. Consider the opera-
tor V in (20), for Γm1 = A+ M̌mL, Γm0 = A, and m ∈ Sη .
By Proposition 1, ρ(V) = ρ(L), and, consequently, ρ(V) < 1.
Thus, the system (5) is MSD, and statement (i) holds.

Assume that (ii) holds. Then, there exists a mode-dependent
filtering gain M̂n ∈ F

nx×ny , n ∈ Sη , such that ρ(T ) < 1, with
T ∈ B(HInx) in (18), for Γ̂n1 = A+AM̂nL and Γ̂n0 = A,
n ∈ Sη . Consider the operatorL ∈ B(HInx) in (19), withΓn1 =

Γ̂n1 and Γn0 = Γ̂n0, for all n ∈ Sη . By Proposition 1, ρ(T ) =
ρ(L), and, therefore, ρ(L) < 1. By applying [11, Th. 3.9],
we have that, for V = [Vm]Im=1 ∈ H

Inx,+, Vm 	 0, m ∈
Sη , Lm(V)− Vm ≺ 0. By taking W1 = V, Zm = Em(W1),
condition (42c) is satisfied. By choosing Wm2 = ZmAM̂m,
Wm3 = W ∗

m2Z
−1
m Wm2, and substituting these expressions in

Lm(V)− Vm, condition (42a) follows. Recalling that Wm3 �
W ∗

m2Z
−1
m Wm2, by the Schur complement condition (42b) is

satisfied, and (iii) holds.
Let us prove that if the matrix A is nonsingular, the con-

verse implication, i.e., (iii) ⇒ (ii), is true. Assume that (iii)
holds and matrix A is nonsingular. Then, the filtering gain can
be chosen as M̂m = A−1Z−1

m Wm2. Consider again the oper-
ator L defined above. From (42b), by the Schur complement
(see [11, Lemma 2.23]), we have Wm3 � W ∗

m2Z
−1
m Wm2 and,

from (42c), Zm � Em(W1). Thus, by condition (42a), we get
Lm(W1)−Wm1 ≺ 0 and, by [11, Th. 3.9],ρ(L) < 1. Consider
the operator T in (18), with Γ̂n1 = A+AM̂nL, Γ̂n0 = A, and
n ∈ Sη . This implies that Γ̂n0 = Γn0, Γ̂n1 = Γn1, for alln ∈ Sη ,
and, by Proposition 1, ρ(T ) = ρ(L). Therefore, ρ(T ) < 1, and
condition (ii) holds. �

Proof of Proposition 7: Assume that (43) holds for some
W1 = [Wm1]

I
m=1 ∈ H

Inx,+, Z ∈ F
nx×nx
+ , W2 ∈ F

nx×ny ,
W3 ∈ F

ny×ny

+ , for all m ∈ Sη . Choose the filtering gain
as M̌ b = Z−1W2 and consider L ∈ B(HInx) in (19), for
Γm1 = A+ M̌ bL, Γm0 = A, and m ∈ Sη . From (43b), by
the Schur complement (see [11, Lemma 2.23]), we have
that W3 � W ∗

2Z
−1W2 and, from (43c), Em(W1) � Z,

for all m ∈ Sη . Thus, by condition (43a), we obtain
Lm(W1)−Wm1 ≺ 0. By [11, Th. 3.9], it follows that
ρ(L) < 1. Consider the operator V ∈ B(HInx) defined in (20),
with Γm1 = A+ M̌ bL, Γm0 = A, and m ∈ Sη . By Proposition
1, ρ(V) = ρ(L), and, consequently, ρ(V) < 1. Therefore, the
MJLS (5) is Strong-MSD, and thus, the proof of the implication
(i) ⇒ (ii) is complete.

Now, assume that conditions (43) hold for some Z ∈
F
nx×nx
+ , W1 = [Wm1]

I
m=1 ∈ H

Inx,+, W2 ∈ F
nx×ny , and

W3 ∈ F
ny×ny

+ . Recall that the matrix A is nonsingular by as-

sumption and choose the filtering gain as M̂ b = A−1Z−1W2.
Consider the operator L ∈ B(HInx) in (19) with Γm1 = A+

AM̂ bL, Γm0 = A, and m ∈ Sη . From (43b), by the Schur com-
plement, we have that W3 � W ∗

2Z
−1W2, and from (43c), we

have Em(W1) � Z, for all m ∈ Sη . Thus, by condition (43a),
we obtain Lm(W1)−Wm1 ≺ 0. By [11, Th. 3.9], ρ(L) < 1.
Consider T ∈ B(HInx) in (18), for Γ̂m1 = A+AM̂ bL, Γ̂m0 =

A, and m ∈ Sη . This implies Γ̂m0 = Γm0 and Γ̂m1 = Γm1.
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By Proposition 1, ρ(L) = ρ(T ), and, consequently, ρ(T ) < 1.
Thus, the system (5) is Strong-Strict-MSD. �
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